机器学习实战——绘制决策树(代码)

本文介绍了基于Peter Harrington的《机器学习实战》学习过程,通过代码展示了如何实现并运行决策树,虽然代码与书中有所差异,但依然能够成功运行。
摘要由CSDN通过智能技术生成

最近在学习Peter Harrington的《机器学习实战》,代码与书中的略有不同,但可以顺利运行。

import matplotlib.pyplot as plt

# 定义文本框和箭头格式
decisionNode = dict(boxstyle='sawtooth', fc='0.8')
leafNode = dict(boxstyle='round4', fc='0.8')
arrow_args = dict(arrowstyle='<-')

# 使用文本注解绘制树节点
def plotNode(nodeTxt, cencerPt, parentPt, nodeType):
    createPlot.axl.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=cencerPt, textcoords='axes fraction',
                            va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)

# 第一版的createPlot(),之后还需要修改
# def createPlot():
#     fig = plt.figure(1, facecolor='white')
#     fig.clf()
#     createPlot.ax1 = plt.subplot(111, frameon=False)
#     plotNode('a decision  node', (0.5, 0.1), (0.1, 0.5), decisionNode)
#     plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
#     plt.show()
# createPlot()
# 报错'function' object has no attribute 'axl',原因未知

# 获取叶节点的数目
def getNumLeafs(mytree):
    numLeafs = 0
    firstStr = list(mytree.keys())[0]
    secondDict = mytree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs

# mytree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
# print(getNumLeafs(mytree))

# 获取决策树的层数
def get
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值