最近在学习Peter Harrington的《机器学习实战》,代码与书中的略有不同,但可以顺利运行。
import matplotlib.pyplot as plt
# 定义文本框和箭头格式
decisionNode = dict(boxstyle='sawtooth', fc='0.8')
leafNode = dict(boxstyle='round4', fc='0.8')
arrow_args = dict(arrowstyle='<-')
# 使用文本注解绘制树节点
def plotNode(nodeTxt, cencerPt, parentPt, nodeType):
createPlot.axl.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=cencerPt, textcoords='axes fraction',
va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
# 第一版的createPlot(),之后还需要修改
# def createPlot():
# fig = plt.figure(1, facecolor='white')
# fig.clf()
# createPlot.ax1 = plt.subplot(111, frameon=False)
# plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
# plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
# plt.show()
# createPlot()
# 报错'function' object has no attribute 'axl',原因未知
# 获取叶节点的数目
def getNumLeafs(mytree):
numLeafs = 0
firstStr = list(mytree.keys())[0]
secondDict = mytree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
numLeafs += getNumLeafs(secondDict[key])
else:
numLeafs += 1
return numLeafs
# mytree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
# print(getNumLeafs(mytree))
# 获取决策树的层数
def get