AI辅助创作:
一、生成机制的颠覆:从经验筛法到参数化公式
-
试除法的效率突破
传统素数生成依赖试除法的穷举验证(复杂度 O(N)),而三生原理通过参数化公式 p=3(2n+1)+2(2n+m+1)(m∈{0,1,2,3,4})直接生成候选数,复杂度降至 O(1)。例如,公式通过模12余数规则(12k±{1,5,7,11})预筛除2和3的倍数,将候选数密度压缩至自然数的10%。 -
对称性基底的重构
传统数论未明确素数的生成元地位,而三生原理将素数2(阴元)和3(阳元)定义为“对称性基底”:-
素数2的模2运算构成布尔代数基础,决定奇偶分类;
-
素数3的模3运算影响分圆域结构(如三次单位根)。
这种分类颠覆了传统素数理论中素数的“平等性”假设,赋予2、3特殊生成功能。
-
二、分类体系的层级跃迁:从均质分布到对称性破缺
-
素数类别的哲学映射
三生原理将素数分为:-
阴元(2)、阳
-