Ajax数据爬取

18 篇文章 0 订阅
11 篇文章 0 订阅

有时候我们在用 requests 抓取页面的时候,得到的结果可能和在浏览器中看到的不一样:在浏览器中可以看到正常显示的页面数据,但是使用 requests 得到的结果并没有。这是因为 requests 获取的都是原始的 HTML 文档,而浏览器中的页面则是经过 JavaScript 处理数据后生成的结果,这些数据的来源有多种,可能是通过 Ajax 加载的。

对于第一种情况,数据加载是一种异步加载方式,原始的页面最初不会包含某些数据,原始页面加载完后,会再向服务器请求某个接口获取数据,然后数据才被处理从而呈现到网页上,这其实就是发送了一个 Ajax 请求。

所以如果遇到这样的页面,直接 requests 等库来抓取原始页面,是无法获取到有效数据的,这时需要分析网页后台向接口发送的 Ajax 请求,如果可以用 requests 来模拟 Ajax 请求,那么就可以成功抓取了。

什么是Ajax

Ajax ,全称为 Asynchronous JavaScript and XML ,即异步的 JavaScript XML。它不是一门编程语言,而是利用 JavaScript 在保证页面不被刷新、页面链接不改变的情况下与服务器交换数据并更新部分网页的技术。

实例引入

浏览网页的时候,我们会发现很多网页都有下滑查看更多的选项。比如, 拿微博来说:https://weibo.com/?category=0 ,切换到微博页面, 一直下滑,可以发现下滑几个微博之后,再向下就没有了,转而会出现一个加载的动画,不一会儿下方就继续出现了新的微博内容,这个过程其实就是 Ajax 加载的过程。

我们注意到页面其实并没有整个刷新,也就意味着页面的链接没有变化,但是网页中却多了新内容,也就是后面刷出来的新微博。这就是通过 Ajax 获取新数据并呈现的过程。

基本原理

初步了解了 Ajax 之后,我们再来详细了解它的基本原理。发送 Ajax 请求到网页更新的这个过程可以简单分为以下三步:
(1)发送请求
(2)解析内容
(3)渲染网页
AJAX数据爬取基本认识及原理
我们知道,真实的数据其实都是一次次 Ajax 请求得到的,如果想要抓取这些数据,需知道这些请求到底是怎么发送的,发往哪里,发了哪些参数。如果我们知道了这些,不就可以用 Python 模拟这个发送操作,获取到其中的结果了吗?

Ajax分析方法

这里还以前面的微博为例,我们知道拖动刷新的内容由 Ajax 加载,而且页面的 URL 没有变化,那么应该到哪里去查看这些 Ajax 请求呢?

查看请求

这里还需要借助浏览器的开发者工具,下面以Chrome浏览器来介绍。

首先 ,用 Chrome 浏览器打开微博的链接 https://weibo.com/,随后在页面中点击鼠标右键, 选择 “检查”选项,此时便会弹出开发者工具。如下图:
在这里插入图片描述
此时在 Elements 选项卡中便会观察到网页的源代码,右侧便是节点的样式。

不过这并不是我们想要寻找的内容。切换到 Network 选项卡,随后重新刷新页面,可以发现这里出现了非常多的条目。
在这里插入图片描述
前面也提到过,这里其实就是在页面加载过程中浏览器与服务器之间发送请求和接受响应的所有记录。

Ajax 其实有其特殊的请求类型,它叫作 xhr。点击 XHR 筛选器即可得到xhr类型的数据。用鼠标点击这个请求,可以查看这个请求的详细信息。
在这里插入图片描述
在右侧可以观察到其 Request Headers、URL 和 Response Headers 等信息。其中 Request Headers 中有一个信息为 X-Requested-With:XMLHttpRequest ,这就标记了此请求是 Ajax 请求
在这里插入图片描述
随后点击一下 Preview ,即可看到响应的内容,它是 JSON 格式的。这里 Chrome 为我们自动做了解析,点击箭头即可展开和收起相应内容。

另外,也可以切换到 Response 选项卡,从中观察到真实的返回数据。
在这里插入图片描述
接下来,切回到第一个请求,观察一下它的Response 是什么:
在这里插入图片描述
这就是最原始的连接返回的结果,其代码量很少,结构也比较简单,只是执行了一些JavaScript。

所以说,我们看到的微博页面的真实数据并不是最原始的页面返回的,而是后来执行 JavaScript 后再次向后台发送了 Ajax 请求,浏览器拿到数据后再进一步渲染出来的。

过滤请求

接下来,我们可以使用 Chrome 开发者工具的筛选功能筛选出所有的 Ajax 请求。在请求的上方有一层筛选栏,直接点击XHR,此时在下方显示的请求便是Ajax请求。
在这里插入图片描述
接下来,不断滑动页面,可以看到页面底部有一条条新的微博被刷出,而开发者工具下方也一个个地出现 Ajax 请求,这样我们就可以捕获到所有的 Ajax 请求了。

随意点开一个条目,都可以清楚地看到其 Request URL、Request Headers、Response Headers、Response Body 等内容,此时想要模拟请求和提取就非常简单了。

Ajax实战案例

我们以今日头条为例来尝试通过分析 Ajax 请求来抓取网页数据的方法。这次要抓取的目标是今日头条的街拍美图,抓取完成之后,将每组图片分文件夹下载到本地并保存下来。

准备工作

在本节开始之前,请确保已经安装好 requests 库。

抓取分析

在抓取之前,首先要分析抓取的逻辑。打开今日头条的首页 http://www.toutiao.com/ ,如下图所示:
在这里插入图片描述
右上角有一个搜索入口,这里尝试抓取街拍美图,所以输入“街拍”二字搜索一下,结果如下:
在这里插入图片描述
这时打开开发者工具,查看所有的网络请求。首先,打开第一个网络请求,这个请求的 URL
就是当前的链接 http://www.toutiao.com/search/?keyword=街拍,打开 Preview 选项卡查看 Response Body。

如果页面中的内容是根据第一个请求得到的结果渲染出来的,那么第一个请求的源代码中必然会包含页面结果中的文字。为了验证,我们可以尝试搜索一下搜索结果的标题,比如“中国街拍” 二字。
在这里插入图片描述
我们发现,网页源代码中并没有包含这个字符串。因此,可以初步判断这些内容是由 Ajax 加载,然后用 JavaScript 渲染出来的。接下来去查看一下 XHR 类型的请求。

不出所料,这里出现了比较常规的 Ajax 请求,看看它的结果是否包含了页面中的相关数据。

点击 data 字段展开,发现这里有许多条数据。点击第一条展开,可以发现有一个 title 字段,它的值就是页面中第一条数据的标题。再检查一下其他数据,正好也是一一对应的。
在这里插入图片描述
这就确定了这些数据确实是由 Ajax 加载的。

我们的目的是抓取其中的图片,这里一组图就对应前面的 data 字段中的一条数据。每条数据还有一个 detail_image_list 字段,它是列表形式,其中包含了组图的所有图片。
在这里插入图片描述
因此,我们只需要将列表中的url字段提取出来并下载就好了。每一组图都建立一个文件夹,文件夹的名称就为组图的标题。

接下来,若想爬取更多的数据,我们还可以分析一下 URL 的规律。

这里观察一下后续链接的参数,发现变化的参数只有 offset ,其他参数都没有变化,而且第二次请求的 offset 值为20,第三次为 40,第四次为 60 ,所以可以发现规律,这个 offset 值就是偏移量,进而可以推断出 count 参数就是一次性获取的数据条数。因此,我们可以用 offset 参数来控制数据分页。这样一来,我们就可以通过接口批量获取数据了,然后将数据解析,将图片下载下来即可。

实战演练

我们刚才已经分析了一下 Ajax 请求的逻辑,下面就用程序来实现图片下载。

首先,实现方法 get_page() 来加载单个 Ajax 请求的结果。其中唯一变化的参数就是 offset ,所以我们将它当作参数传递,实现如下:

import requests
from urllib.parse import urlencode

def get_page(offset):
    params = {
        'offset':offset,
        'format':'json',
        'keyword':'街拍',
        'autoload':'true',
        'count':20,
        'cur_tab':'1'}
    url = 'http://www.toutiao.com/search_content/?' + urlencode(params)
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()
    except:
        return None

这里我们用 urlencode() 方法构造请求的 GET 参数,然后用 requests 请求这个链接,如果返回状态码为 200 ,则调用 response.json() 方法将结果转为 JSON 格式,然后返回。

接下来,再实现一个解析方法:提取每条数据的 detail_image_list 字段中的每一张图片链接,将图片
链接和图片所属的标题一并返回,此时可以构造一个生成器。实现代码如下:

def get_images(json):
    if json.get('data'):
        for item in json.get('data'):
            title = item.get('title')
            images = item.get('detail_image_list')
            for image in images:
                yield {
                    'image':image.get('url'),
                    'title':title
                    }

接下来,实现一个保存图片的方法 save_image() ,其中 item 是前面 get_images() 方法返回的一个字典。在该方法中,首先根据 item 的 title 来创建文件夹,然后请求这个图片链接,获取图片的二进制数据,以二进制的形式写入文件。图片的名称可以使用其内容的 MD5 值,这样可以去除重复。相关代码如下:

import os
from hashlib import md5

def save_image(item):
    if not os.path.exists(item.get('title')):
        os.mkdir(item.get('title'))
    try:
        response = requests.get(item.get('image'))
        if response.status_code == 200:
            file_path = '{}/{}.{}'.format(item.get('title'),md5(response.content).hexdigest(),'jpg')
            if not os.path.exists(file_path):
                with open(file_path,'wb')as f:
                    f.write(response.content)
            else:
                print('Already Downloaded',file_path)
    except:
        print('Failed tto Save Image')

最后,只需要构造一个 offset 数组,遍历 offset ,提取图片链接,并将其下载即可:

from multiprocessing.pool import Pool

def main(offset):
    json = get_page(offest)
    for item in get_images(json):
        print(item)
        save_image(item)

if __name__ == '__main__':
    pool = Pool()
    groups = ([x*20 for x in range(0,20)])
    pool.map(main,)
    pool.close()
    pool.join()

这里利用了多线程的线程池,调用其 map() 方法实现多线程下载。

这样整个程序就完成了,运行之后可以看到图片被保存下来了。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值