sklearn-porter库和m2cgen库的比较

本文探讨了sklearn-porter库在分类模型转换上的优势和m2cgen库在回归模型上的实用性,建议分类模型使用sklearn-porter,回归模型选择m2cgen,特别指出两者对深度学习模型支持不足。
摘要由CSDN通过智能技术生成

sklearn-porter库支持转换的分类模型和回归模型如下:
在这里插入图片描述
sklearn-porter库缺点:回归模型的支持不够

m2cgen库支持转换的分类模型和回归模型如下:
在这里插入图片描述
m2cgen支持较多分类和回归模型(测试了一下分类模型导出为c代码,但出现错误,感觉分类模型导出不好用,回归模型导出可以正常编译运行)

使用建议: 分类模型导出使用sklearn-porter库,回归模型导出使用m2cgen库,需要使用其它暂不支持的机器学习模型,需要自己查找c/c++接口或java接口;
以上两个库针对机器学习的模型导出,不支持深度学习模型的导出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值