377. 组合总和Ⅳ
题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
思路
这题对应了518零钱兑换中“先遍历容量,再遍历物体”的遍历顺序。由于元素相同顺序不同的组合算两个组合,其实是求排列。
1. dp数组定义
dp[j]: 凑成目标正整数i的组合(排列)有dp[j]个。
2. 递推公式
对于遍历到的正整数,num,它和之前遍历过的数凑成j的方法取决于之前的正整数能凑成正整数(j-num)的方法,把这个正整数i能凑成的方法加入到dp[j]中。因此,递推公式为:
dp[j] += dp[j-num]
3. 初始条件
dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。对于非0下标的dp[i]应该初始化为0。
4. 遍历顺序
完全背包的容量由小到大遍历,此外,在518. 零钱兑换中具体讲过遍历物体和容量的顺序。
代码随想录算法训练营第五十天(完全背包篇)|518. 零钱兑换Ⅱ-CSDN博客
如果先遍历物体,再遍历容量,那么比如nums[0] = 1, nums[2] = 3, 在计算dp[4]的时候,结果集只有集合{1,3} ,不会有{3,1},因为nums遍历放在外层,nums[0]中所有容量遍历完之后才会轮到nums[2]。
如果外层遍历容量,内层遍历物体,那么对于每个容量,所有的物体都会轮一遍,那么就会即出现{1,3},又出现{3, 1},符合题意。
因此,遍历顺序是外层从小到大遍历容量,内层遍历物体。
5. 举例推导dp数组
代码实现
class Solution(object):
def combinationSum4(self, nums, target):
dp = [0]*(target + 1)
dp[0] = 1
for j in range(target+1):
for num in nums:
if num <= j:
dp[j] += dp[j - num]
return dp[target]