【问题分析】
第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决。
【建模方法】
首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。
1、把序列每位i拆成两个点i.a和i.b,从i.a到i.b连接一条容量为1的有向边。
2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到i.a连接一条容量为1的有向边。
3、如果F[i]=1,从i.b到T连接一条容量为1的有向边。
4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从i.b到j.a连接一条容量为1的有向边。
求网络最大流,就是第二问的结果。把边(1.a,1.b)(N.a,N.b)(后两条边在满足条件的情况下添加)(S,1.a)(N.b,T)这四条边的容量修改为无穷大,在残余网络上再求一次网络最大流,加在上一问的结果上,就是第三问结果。
【建模分析】
上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。
由于序列中每个点要不可重复地取出,需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。
第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。
#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
struct edge{
int to,cap,rev;
};
vector<edge>G[1210];
int level[1205],iter[1205];
void addedge(int from,int to,int cap)
{
G[from].push_back(edge{to,cap,(int)G[to].size()});
G[to].push_back(edge{from,0,(int)G[from].size()-1});//反向容量为0!!
}
void bfs(int s)
{
memset(level,-1,sizeof(level));
queue<int>que;
level[s]=0;que.push(s);
while(!que.empty()){
int t=que.front();que.pop();
for(int i=0;i<G[t].size();i++){
edge e=G[t][i];
if(e.cap>0&&level[e.to]<0){
level[e.to]=level[t]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f)
{
if(v==t)return f;
for(int&i=iter[v];i<G[v].size();i++){//注意传引用!
edge&e=G[v][i];
if(e.cap>0&&level[v]<level[e.to]){
int d=dfs(e.to,t,min(f,e.cap));
if(d>0){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return 0;//不要漏了这个,很多时候可能是无法增广的
}
int maxflow(int s,int t){
int flow=0;
for(;;){
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while(f=dfs(s,t,0x7f7f7f7f))
flow+=f;
}
}
int main()
{
int n,i,j,k;
int num[505],f[505];memset(f,0,sizeof(f));
cin>>n;
for(i=1;i<=n;i++)
cin>>num[i];
for(i=n;i>=1;i--) {
f[i]=1;
for (j = n; j > i; j--) {
if(num[j]>=num[i])
f[i]=max(f[i],f[j]+1);
}
}
int ans=0;
for(i=1;i<=n;i++)ans=max(ans,f[i]);
cout<<ans<<endl;
for(i=1;i<=n;i++){
addedge(i,i+600,1);
if(f[i]==ans)
addedge(0,i,1);
if(f[i]==1)
addedge(i+600,1200,1);
for(j=i+1;j<=n;j++){
if(num[j]>=num[i]&&f[j]==f[i]-1)
addedge(i+600,j,1);
}
}
int ans1=maxflow(0,1200);
cout<<ans1<<endl;
addedge(1,601,0x7f7f7f7f);addedge(n,n+600,0x7f7f7f7f);
if(f[1]==ans)addedge(0,1,0x7f7f7f7f);if(f[n]==1)addedge(n+600,1200,0x7f7f7f7f);//如果满足相关条件,加边
cout<<ans1+maxflow(0,1200)<<endl;
return 0;
}