Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
算法: 并查集 + 最小生成树
思路: 将每条边从小到大排序,从最短边开始,如果两个端点不属于同一集合,即两个端点在bin数组中存储的根不同(并不是直接的bin[st\ed])(find(st), find(ed),则可以归为同一个集合。
如果两个端点属于同一个集合,说明出现了环,则continue;
记录1: 初始化bin数组时忘了循环中要=n, 村庄编号从1开始
#include<bits/stdc++.h>
#include <windows.h>
using namespace std;
int N, bin[105];
struct node{
int st, ed, len;
}r[105*105];
bool cmp(node a, node b) {
return a.len < b.len;
}
int find(int a) {
while(a != bin[a]) {
a = bin[a];
}
return a;
}
int main() {
int m, sum;
while(scanf("%d", &N), N) {
for(int i = 1; i <= N; i++) bin[i] = i; // 记录1
m = N * (N - 1) / 2, sum = 0;
// 输入的道路数量范围时m
for(int i = 1; i <= m; i++) scanf("%d %d %d", &r[i].st, &r[i].ed, &r[i].len);
// sort(起始地址,结束地址,函数),数组r存到了m, 则结束地址是m + 1;
sort(r + 1, r + m + 1, cmp);
// 遍历所有的道路, 范围是m
for(int i = 1; i <= m; i++) {
int a = find(r[i].st), b = find(r[i].ed);
if(a != b) bin[b] = a, sum += r[i].len;
}printf("%d\n", sum);
}
return 0;
}