837. 连通块中点的数量

837. 连通块中点的数量

题目

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。

输出格式
对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No。

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3

代码

#include <iostream>

using namespace std;

const int N = 100010;
int p[N], cnt[N];//父节点数组p[] 集合/连通块的元素个数数组cnt[]


//查找某个元素的所在集合,即返回所在集合的根节点的值,路径压缩优化
int find(int x)
{
    if(p[x] != x)
        p[x] = find(p[x]);
    return p[x];
}

int main()
{
    int n, m;
    cin>>n>>m;

    //初始化并查集的p数组
    for(int i = 1; i <= n; i++)
        p[i] = i, cnt[i] = 1;//每个集合或者说连通块的初始元素个数为1

    while(m --)
    {
        char op[5];
        scanf("%s", op);
        int a, b;
        if(op[0] == 'C')
        {
            scanf("%d%d", &a, &b);
            int pa = find(a);//a所在连通块的根节点的值
            int pb = find(b);//b所在连通块的根节点的值
            if(pa != pb)//如果a和b不在同一个连通块/集合
            {
                p[pa] = pb;//将a所在集合合并到b所在的集合
                cnt[pb] += cnt[pa];//b所在连通块/集合的元素个数 += b所在连通块/集合的元素个数
            }
        }
        else if(op[1] =='1')
        {
            scanf("%d%d", &a, &b);
            if(find(a) == find(b)) puts("Yes");
            else puts("No");
        }
        else if(op[1] == '2')
        {
            scanf("%d", &a);
            cout<<cnt[find(a)]<<endl;//输出a所在连通块/集合的元素个数
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值