题目
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
Q2 a,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。
输出格式
对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No。
对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
代码
#include <iostream>
using namespace std;
const int N = 100010;
int p[N], cnt[N];//父节点数组p[] 集合/连通块的元素个数数组cnt[]
//查找某个元素的所在集合,即返回所在集合的根节点的值,路径压缩优化
int find(int x)
{
if(p[x] != x)
p[x] = find(p[x]);
return p[x];
}
int main()
{
int n, m;
cin>>n>>m;
//初始化并查集的p数组
for(int i = 1; i <= n; i++)
p[i] = i, cnt[i] = 1;//每个集合或者说连通块的初始元素个数为1
while(m --)
{
char op[5];
scanf("%s", op);
int a, b;
if(op[0] == 'C')
{
scanf("%d%d", &a, &b);
int pa = find(a);//a所在连通块的根节点的值
int pb = find(b);//b所在连通块的根节点的值
if(pa != pb)//如果a和b不在同一个连通块/集合
{
p[pa] = pb;//将a所在集合合并到b所在的集合
cnt[pb] += cnt[pa];//b所在连通块/集合的元素个数 += b所在连通块/集合的元素个数
}
}
else if(op[1] =='1')
{
scanf("%d%d", &a, &b);
if(find(a) == find(b)) puts("Yes");
else puts("No");
}
else if(op[1] == '2')
{
scanf("%d", &a);
cout<<cnt[find(a)]<<endl;//输出a所在连通块/集合的元素个数
}
}
return 0;
}