一、题目
二、输入输出样例(尽可能覆盖各种情况)
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
示例 4:
输入:nums = [0], target = 0
输出:[0,0]
示例 1:
输入:nums = [5,7,7,8,8,8,8,10], target = 8
输出:[3,6]
三、题目分析
3.1 方法一:朴素解法—利用循环寻找左右边界
3.1.1 编程
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if (nums.size() == 0) {
return {-1, -1};
}
vector<int> result(2, -1);
for (int i = 0; i < nums.size(); ++i) {
if (nums[i] == target) {
result[0] = i;
break;
}
}
for (int i = nums.size() - 1; i >= 0; --i) {
if (nums[i] == target) {
result[1] = i;
break;
}
}
return result;
}
};
3.2.2 运行结果
3.2 方法二:二分查找/折半查找
注意到题目中给出的数组是按照升序排列的,我们可以利用有序这点,借助二分查找来寻找开始位置和结束位置。
3.2.1 编程
class Solution {
private:
int findFirstPosition(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
// 不使用等号,可以省略判是否越界
while (left < right) {
int mid = (left + right) / 2;
if (nums[mid] < target) {
left = mid + 1;
}
else if (nums[mid] == target) {
right = mid;
}
else {
right = mid - 1;
}
}
// 并不能保证数组中一定有target,故需要判断
if (nums[left] == target) {
return left;
}
return -1;
}
int findLastPosition(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
while (left < right) {
// 这里是向上取整,下面有两个left分支,需要兼容
int mid = (left + right + 1) / 2;
if (nums[mid] < target) {
left = mid + 1;
}
// mid左边一定不是target出现的最后一个位置
else if (nums[mid] == target) {
left = mid;
}
else {
right = mid - 1;
}
}
// 查找第一个位置时,保证了target一定在,直接返回
return left;
}
public:
vector<int> searchRange(vector<int>& nums, int target) {
if (nums.size() == 0) {
return {-1, -1};
}
int n = nums.size();
int first = findFirstPosition(nums, target);
if (first == -1) {
return {-1, -1};
}
int last = findLastPosition(nums, target);
return {first, last};
}
};