盛最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

这道题理所应当可以想到一个O(n^2)的算法

int maxArea(int* height, int heightSize){
    int min_h;                        //用来记录两个高的最低点
    int bottom;                       //记录底边长
    int max=0;                        //记录面积的最大值
    int i,j;
    for(i=0;i<heightSize;i++){        //两层循环,把每一种可能性都尝试一遍
        for(j=i;j<heightSize;j++){
            bottom =j-i;
            min_h=height[i]<height[j]?height[i]:height[j];
            if(min_h*bottom>max)
                max = min_h*bottom;
        }
    }
    return max;
}

这样写在逻辑上是没有问题的,但是在提交的时候却出现了时间超出限制。是因为这个解法的时间复杂度太高了,让我们来看一种时间复杂度为O(n)的解法。

双指针法:

这样一个水桶面积取决于两个边最短的一条(min_h)以及两个边之间的距离——底(bottom)

即 area = min_h*bottom;

可以利用两个指针分别从两头朝中间移动,用两边更短那条高*两个指针之间的距离bottom,与水桶面积最大值做对比;

根据木桶理论,我们应该让高度更小的那条边往中间移动;

int maxArea(int* height, int heightSize){
    int min_h;
    int bottom;
    int max;
    int i,j;
    max =i =0;
    j=heightSize-1;
    while(i<j){
        min_h=height[i]<height[j]?height[i]:height[j];
        bottom = j-i;
        if(min_h*bottom>max){
            max = min_h*bottom;
        }
        if (height[i]<height[j])
            i++;
        else j--;
    }
    return max;
}

该算法的时间复杂度为O(n);

空间复杂度为O(1);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值