给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
这道题理所应当可以想到一个O(n^2)的算法
int maxArea(int* height, int heightSize){
int min_h; //用来记录两个高的最低点
int bottom; //记录底边长
int max=0; //记录面积的最大值
int i,j;
for(i=0;i<heightSize;i++){ //两层循环,把每一种可能性都尝试一遍
for(j=i;j<heightSize;j++){
bottom =j-i;
min_h=height[i]<height[j]?height[i]:height[j];
if(min_h*bottom>max)
max = min_h*bottom;
}
}
return max;
}
这样写在逻辑上是没有问题的,但是在提交的时候却出现了时间超出限制。是因为这个解法的时间复杂度太高了,让我们来看一种时间复杂度为O(n)的解法。
双指针法:
这样一个水桶面积取决于两个边最短的一条(min_h)以及两个边之间的距离——底(bottom)
即 area = min_h*bottom;
可以利用两个指针分别从两头朝中间移动,用两边更短那条高*两个指针之间的距离bottom,与水桶面积最大值做对比;
根据木桶理论,我们应该让高度更小的那条边往中间移动;
int maxArea(int* height, int heightSize){
int min_h;
int bottom;
int max;
int i,j;
max =i =0;
j=heightSize-1;
while(i<j){
min_h=height[i]<height[j]?height[i]:height[j];
bottom = j-i;
if(min_h*bottom>max){
max = min_h*bottom;
}
if (height[i]<height[j])
i++;
else j--;
}
return max;
}
该算法的时间复杂度为O(n);
空间复杂度为O(1);