题目大意:
给你一个n*m ( 0 < n,m <= 40 )的矩形,给你四种颜色,一个人切这个矩形,第一次水平切,切玩后选择一块矩形给他染上一种颜色,第二次垂直切未染色的那块矩形,切玩后选择新增的两块矩形中的一块给他染上一种颜色,第三次水平切……如此循环反复,保证每次染色时相邻矩形染色不一样,问你最后的方案数mod 1000000007。T (T <= 1000)组测试数据。
题解:
用f[i][j][a][b][c][d][2]表示长为i宽为j,四边颜色分别为a、b、c、d,并且当前需要画横线还是竖线时的总方案数,然后枚举画线位置以及其中一部分所染的颜色进行状态转移。颜色表示中需要多加一种表示未染色,即5种。
实现用记忆化搜索。
此题若超时的原因在于f[i][j][a][b][c][d][2]是一定的,搜出来之后不必每次在新的测试点都重新memset
此题的trick在于,单独的f[i][j][a][b][c][d][2]方程是不对的,还要减去重复的部分,读者可以拿来3*1分析。
且程序中对此做了标记。
#include<iostream>
#include<cstdlib>
#include<cstring>
using namespace std;
const long long mod=1000000007;
long long f[42][42][5][5][5][5][3];
int n,m,sec;
void dp(int i,int j,int a,int b,int c,int d,int t)
{
if(f[i][j][a][b][c][d][t]>=0)return;
f[i][j][a][b][c][d][t]=0;
for(int z=1;z<=4;z++)
if(z!=a && z!=b && z!=c && z!=d)
f[i][j][a][b][c][d][t]++;
if(t==1)//to dp
{
for(int k=1;k<=j-1;k++)
{
for(int z=1;z<=4;z++)
if(z!=b && z!=c && z!=d)
{
dp(i,k,a,b,z,d,2);
f[i][j][a][b][c][d][1]=(f[i][j][a][b][c][d][1]+f[i][k][a][b][z][d][2])%mod;
}
for(int z=1;z<=4;z++)
if(z!=a && z!=b && z!=d)
{
dp(i,j-k,z,b,c,d,2);
f[i][j][a][b][c][d][1]=(f[i][j][a][b][c][d][1]+f[i][j-k][z][b][c][d][2])%mod;
}
}
long long ans=0;
for(int z=1;z<=4;z++)
if(z!=a && z!=b && z!=d)
for(int p=1;p<=4;p++)
if(p!=z && p!=b && p!=c && p!=d)
ans++;
ans=ans*(j-1);
f[i][j][a][b][c][d][1]=(f[i][j][a][b][c][d][1]+mod-ans)%mod;//减去重复的部分
}
else
{
for(int k=1;k<=i-1;k++)
{
for(int z=1;z<=4;z++)
if(z!=a && z!=c && z!=d)
{
dp(k,j,a,b,c,z,1);
f[i][j][a][b][c][d][2]=(f[i][j][a][b][c][d][2]+f[k][j][a][b][c][z][1])%mod;
}
for(int z=1;z<=4;z++)
if(z!=a && z!=b && z!=c)
{
dp(i-k,j,a,z,c,d,1);
f[i][j][a][b][c][d][2]=(f[i][j][a][b][c][d][2]+f[i-k][j][a][z][c][d][1])%mod;
}
}
//减去重复的
long long ans=0;
for(int z=1;z<=4;z++)
if(z!=a && z!=b && z!=c)
for(int p=1;p<=4;p++)
if(p!=z && p!=a && p!=c && p!=d)
ans++;
ans=ans*(i-1);
f[i][j][a][b][c][d][2]=(f[i][j][a][b][c][d][2]+mod-ans)%mod;
}
}
int main()
{
cin>>sec;
memset(f,-1,sizeof(f));
for(int z=1;z<=sec;z++)
{
cin>>n>>m;
dp(m,n,0,0,0,0,1);
cout<<f[m][n][0][0][0][0][1]%mod<<endl;
}
return 0;
}