1、两数之和
给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。
你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。
重要:保持数组中的每个元素与其索引相互对应的最好方法是什么?哈希表。
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i]; //定义nums[i]的补集complement
//判断如果map中有这个以补集数字为key的键值对则value就是另一个数字的下标
if (map.containsKey(complement)) {
return new int[] { map.get(complement), i };
}
//如果没有就将这个数字和下标以键值对的形式存入map
map.put(nums[i], i);
}
//没有符合的情况抛出异常
throw new IllegalArgumentException("No two sum solution");
}
借用哈希表将复杂度降低,时间复杂度O(n),空间复杂度O(n)。
7、反转整数
给定一个 32 位有符号整数,将整数中的数字进行反转。
注意:
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1]。根据这个假设,如果反转后的整数溢出,则返回 0。
重点:判断数字翻转后溢出的问题。
为了便于解释,我们假设rev 是正数。
如果 temp = rev*10 + pop=rev*10+pop 导致溢出,那么一定有 rev >= INTMAX/10。
如果rev > INTMAX/10 ,那么 temp = rev*10 + pop一定会溢出。
如果rev == INTMAX/10,那么只要pop > 7,temp=rev*10+pop 就会溢出。
当rev为负时可以应用类似的逻辑。
class Solution {
public int reverse(int x) {
int rev = 0;
while (x != 0) {
int pop = x % 10; //余数
x /= 10; //去位
if (rev > Integer.MAX_VALUE/10 || (rev == Integer.MAX_VALUE / 10 && pop > 7)) return 0;
if (rev < Integer.MIN_VALUE/10 || (rev == Integer.MIN_VALUE / 10 && pop < -8)) return 0;
rev = rev * 10 + pop;
}
return rev;
}
}
时间复杂度:O(log(x))
空间复杂度:O(1)