【转载】

hdu 1950 Bridging signals

http://acm.hdu.edu.cn/showproblem.php?pid=1950

===================================
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法
定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。
==================================


最长上升子序列nlogn算法

在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!


  1. /* 
  2.     HDU 1950 Bridging signals 
  3.             —–最长上升子序列nlogn算法 
  4. */  
  5.   
  6. #include<cstdio>  
  7. #include<cstring>  
  8. #define MAXN 40005  
  9.   
  10. int arr[MAXN],ans[MAXN],len;  
  11.   
  12. /*  
  13.     二分查找。 注意,这个二分查找是求下界的;  (什么是下界?详情见《算法入门经典》 P145) 
  14.     即返回 >= 所查找对象的第一个位置(想想为什么) 
  15.  
  16.     也可以用STL的lowe_bound二分查找求的下界 
  17. */  
  18.   
  19. int binary_search(int i){  
  20.     int left,right,mid;  
  21.     left=0,right=len;  
  22.     while(left<right){  
  23.         mid = left+(right-left)/2;  
  24.         if(ans[mid]>=arr[i]) right=mid;  
  25.         else left=mid+1;  
  26.     }  
  27.     return left;  
  28. }  
  29.   
  30. int main()  
  31. {  
  32.     freopen(”input.txt”,“r”,stdin);  
  33.     int T,p,i,j,k;  
  34.     scanf(”%d”,&T);  
  35.     while(T–){  
  36.         scanf(”%d”,&p);  
  37.         for(i=1; i<=p; ++i)  
  38.             scanf(”%d”,&arr[i]);  
  39.           
  40.         ans[1] = arr[1];  
  41.         len=1;  
  42.         for(i=2; i<=p; ++i){  
  43.             if(arr[i]>ans[len])  
  44.                 ans[++len]=arr[i];  
  45.             else{  
  46.                 int pos=binary_search(i);   // 如果用STL: pos=lower_bound(ans,ans+len,arr[i])-ans;   
  47.                 ans[pos] = arr[i];  
  48.         }  
  49.         printf(”%d\n”,len);  
  50.     }  
  51.     return 0;  
  52. }  
/*
    HDU 1950 Bridging signals
            -----最长上升子序列nlogn算法
*/





#include<cstdio> #include<cstring> #define MAXN 40005 int arr[MAXN],ans[MAXN],len; /* 二分查找。 注意,这个二分查找是求下界的; (什么是下界?详情见《算法入门经典》 P145) 即返回 >= 所查找对象的第一个位置(想想为什么) 也可以用STL的lowe_bound二分查找求的下界 */ int binary_search(int i){ int left,right,mid; left=0,right=len; while(left<right){ mid = left+(right-left)/2; if(ans[mid]>=arr[i]) right=mid; else left=mid+1; } return left; } int main() { freopen("input.txt","r",stdin); int T,p,i,j,k; scanf("%d",&T); while(T--){ scanf("%d",&p); for(i=1; i<=p; ++i) scanf("%d",&arr[i]); ans[1] = arr[1]; len=1; for(i=2; i<=p; ++i){ if(arr[i]>ans[len]) ans[++len]=arr[i]; else{ int pos=binary_search(i); // 如果用STL: pos=lower_bound(ans,ans+len,arr[i])-ans; ans[pos] = arr[i]; } printf("%d\n",len); } return 0; }

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SeimiCrawler An agile,powerful,standalone,distributed crawler framework. SeimiCrawler的目标是成为Java里最实用的爬虫框架,大家一起加油。 简介 SeimiCrawler是一个敏捷的,独立部署的,支持分布式的Java爬虫框架,希望能在最大程度上降低新手开发一个可用性高且性能不差的爬虫系统的门槛,以及提升开发爬虫系统的开发效率。在SeimiCrawler的世界里,绝大多数人只需关心去写抓取的业务逻辑就够了,其余的Seimi帮你搞定。设计思想上SeimiCrawler受Python的爬虫框架Scrapy启发,同时融合了Java语言本身特点与Spring的特性,并希望在国内更方便且普遍的使用更有效率的XPath解析HTML,所以SeimiCrawler默认的HTML解析器是JsoupXpath(独立扩展项目,非jsoup自带),默认解析提取HTML数据工作均使用XPath来完成(当然,数据处理亦可以自行选择其他解析器)。并结合SeimiAgent彻底完美解决复杂动态页面渲染抓取问题。 号外 2016.04.14 用于实现浏览器级动态页面渲染以及抓取的SeimiAgent已经发布。SeimiAgent基于Qtwebkit开发,主流浏览器内核(chrome,safari等),可在服务器端后台运行,并通过http协议发布对外调用API,支持任何语言或框架从SeimiAgent获取服务,彻底的解决动态页面渲染抓取等问题。具体可以参考SeimiAgent主页。SeimiCrawler已经在v0.3.0中内置支持SeimiAgent的使用并添加了demo,具体请查看demo或是官方文档。 2016.01.05 专门为SeimiCrawler工程打包部署的maven-seimicrawler-plugin已经发布可用,详细请继续参阅maven-seimicrawler-plugin或是下文工程化打包部署章节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值