【洛谷】P1923 求第 k 小的数(分治+快速排序)

题目描述

输入 n ( n < 5000000 且 n 为 奇 数 ) 个 数 字 a i ( 0 < a i < 1 0 9 ) n(n<5000000 且 n 为奇数) 个数字 a_i(0<a_{i}<10^9) n(n<5000000n)ai(0<ai<109),输出这些数字的第 k k k小的数。最小的数是第 0 0 0小。
请尽量不要使用 nth_element 来写本题,因为本题的重点在于练习分治算法。

输入输出样例

输入
5 1
4 3 2 1 5

输出
2

题目链接:P1923 求第 k 小的数

思路:

  • 可以直接对数组排个序,输出第k个。
  • 分治的做法:利用快速排序的思想,选第一个数(或最后一个数)作为基准temp,把小于等于基准的数放在其左边,大于基准的数放在其右边,则基准数所在位置就和它在排好序的数组中的位置一致。以上操作称为一次划分,每一次划分都会把一个基准数归位。如果划分之后基准数的位置是k,说明当前基准数就是第k个数,直接输出。若当前基准数的位置大于k, 说明第k大的数在基准数的右侧区间,只需在右侧区间再来一次划分。否则在左侧区间,只需在左侧区间划分并查找。

分治代码:

//AC代码:
#include<iostream>
#include<cstdio>
    using namespace std;
    const int N=5e6+100;
    int a[N];
    //做一次划分,归位基准数
    int p(int num[],int l,int r){
    int temp=num[l];
    while(l<r){
    while(l<r&&num[r]>temp) r--;
    num[l]=num[r];
    while(l<r&&num[l]<=temp) l++;
    num[r]=num[l];
    }
    num[l]=temp;
    return l;
    }
    //分治查找第k小的数
    int quicksort(int num[],int l,int r,int k){
    int x=p(num,l,r);
    if(x==k) return num[k];
    return x>k ? quicksort(num,l,x-1,k) :  quicksort(num,x+1,r,k);
    }
    int main(){
    int n,k;
    scanf("%d%d",&n,&k);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    printf("%d\n",quicksort(a,0,n-1,k));
    return 0;
    }

利用nth_element:

  • 第一次见这个函数,貌似有用,熟悉一下:

头文件<algorithm>
void nth_element (RandomAccessIterator first, RandomAccessIterator nth,RandomAccessIterator last);
void nth_element (first, nth,last);
作用:使区间[first,last)中的第nth个数归位。

//AC代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
    using namespace std;
    const int N=5e6+100;
    int a[N];
    int main(){
    int n,k;
    scanf("%d%d",&n,&k);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    nth_element(a,a+k,a+n);   
    printf("%d\n",a[k]);
    return 0;
    }
  • 可以看到nth_element(a,a+k,a+n)是将数组中原本“地址a+k”处的元素归位,“a+0”即第0小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值