洛谷 P1896 [SCOI2005]互不侵犯(状压dp)

本文介绍了如何使用深度优先搜索(DFS)和动态规划(DP)解决编程竞赛中的一个问题——在N×N的棋盘上放置K个互不攻击的国王。首先展示了使用DFS的暴力搜索方法,虽然会超时但能获得部分分数。接着详细解释了DP的完美解决方案,通过状态转移方程和位运算优化时间复杂度,实现了高效的求解。文章还提供了两种解法的C++代码实现,并分析了时间复杂度。
摘要由CSDN通过智能技术生成

题目描述

题目地址:P1896 [SCOI2005]互不侵犯

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
输入格式
只有一行,包含两个数 N , K ( 1 < = N < = 9 , 0 < = K < = N ∗ N ) N,K ( 1 <=N <=9, 0 <= K <= N * N) NK1<=N<=9,0<=K<=NN
输出格式
所得的方案数
输入输出样例
输入

3 2

输出

16

深度优先搜索70分做法:

本着能暴搜就写个暴搜骗骗分的原则,上来就写个dfs。暴力搜索还是要熟练,想不到优化的正解也有分拿!

1.逐行从左到右放置国王,每到一个新的格子(x,y)都有两种选择:放置或者不放置。假如此处放置会产生冲突,就只能选择不放置,即只用递归搜索不放置的情况。假如此处放置国王不会和之前的放置产生冲突,则需要对放置和不放置两种情况进行搜索。
2.一些细节处理:
(1)由于是逐行从左到右放置,只需检查左上方、正上方、右上方、正左方这四个方向是否已经放置了国王。
(2)将dfs的起点设为(0,N),并在递归的入口处判断当前位置是否在一行的末尾:若在一行的末尾则需要跳往下一行,否者继续往右放置。这样做的好处在于可以实现对位置(1,1)处放与不放两种情况的搜索。另外,只有在“放置了k个国王”、“已经不能放国王”、“放到(N,N)处还没有放满k个国王”这几种情况下才递归返回,若不在递归入口处将位置改为“合法位置”,而是把越界后的位置当成一个搜索状态并return的话,那整个搜索的状态就被破坏了。假如画一下dfs的搜索树,就会发现这个问题。(可以类比简单的迷宫问题中对越界的处理来理解,不理解对本题也没有影响 )。
3.时间复杂度粗略估计:不考虑因为“已经放置了k个国王”而产生的递归返回和“某些位置只能选择不放”的情况,那么每个格子有两种选择,即时间复杂度为 2 N ∗ N 2^{N*N} 2NN。N取最大值9,则 2 N ∗ N = 2 81 ≈ 2 ∗ 1 0 24 2^{N*N}=2^{81} \approx2*10^{24} 2NN=28121024,超时是肯定的。

//C++暴搜代码,细节见注释:
#include<iostream>
  using namespace std;
  typedef long long LL;
  int grid[20][20];  //存储棋盘状态,grid[x][y]为1表示放置国王,为0表示不放
  int N,K;
  LL res=0;     //记录方案数
  
  //判断位置(x,y)是否可以放置
  bool check(int x,int y){
  if(!grid[x-1][y]&&!grid[x][y-1]&&!grid[x-1][y-1]&&!grid[x-1][y+1]) return true;
  return false;
  }
  
  //dfs参数说明:当前位置为(x,y),已经放置国王数为k
  void dfs(int x,int y,int k){  
  if(k==K){res++;return;} //放足K个国王,方案数增加
  if(y==N){x++;y=1;}  //到达一行的末尾则跳往下一行第一列   
  else y++;     //否则向右    
  if(x>N) return;  //搜完整个棋盘,结束搜索
  dfs(x,y,k);     //搜索不放置的情况
   
  if(check(x,y)){   //如果不冲突就尝试放置
  grid[x][y]=1;   
  dfs(x,y,k+1);   //搜索下一个状态  
  grid[x][y]=0;   //回溯时撤销放置
  }
  }
  
  int main(){
  cin>>N>>K;
  dfs(0,N,0);
  cout<<res<<endl;
  return 0;
  }

状压dp满分正解

1.用一个二进制数字来表示某一行的国王放置情况:若第i位是1则表示位置i处放了国王,为0表示没有放置国王。 如数字10对应二进制为 ( 1010 ) 2 (1010)_{2} (1010)2,表示该行从右往左第2个、第4个位置上放置了国王;数字15对应二进制 ( 1111 ) 2 (1111)_{2} (1111)2,表示从右往左前4个位置都放了国王;数字42对应二进制 ( 101010 ) 2 (101010)_{2} (101010)2表示该行从右往左第2个,第4个、第6个位置放置了国王。假如棋盘的行宽为N,则从1到(1<<N)-1的数字就可以不重不漏地表示所有可能的放置状态。若对此有疑惑可以看一下->这篇博客理解一下。总之,要知道“从1到(1<<N)-1的数字就可以表示所有可能的放置状态”。
2.对于某个数字,其代表的放置状态可能不合法。如11的二进制为 ( 1011 ) 2 (1011)_{2} (1011)2,代表的放置状态中有两个国王冲突。那如何检查一个数字代表的放置状态是否合法?若数 x x x的二进制有两个相邻的1则不合法,于是可将其右移一位与原数按位与即可判断是否合法。即 x & ( x < < 1 ) x\&(x<<1) x&(x<<1) 0 0 0则不冲突,否则冲突。
3.对于两个代表上下行关系的数字 x x x y y y,如何判断是否冲突:若 x & y x\&y x&y为0则两行不会发生正上方和正下方的冲突, x & ( y < < 1 ) x\&(y<<1) x&(y<<1) ( x < < 1 ) & y (x<<1)\&y (x<<1)&y都为 0 0 0则不会发生左(右)上方、左(右)下方的冲突。
4.确定状态转移方程:定义dp[i][s][k]为“当前放置到第i行,且当前行的放置状态为s,且当前已经放了k个国王”的方案数。接下来确定状态转移方程:正向思考可知由dp[i][s][k]可以递推到的状态为"放置到第i+1行,放置状态为ss,已经放置了kk个国王"的状态,其中ss为一个自身合法且与s无冲突的一个状态,而kk与k的关系为kk=k+ss对应二进制数中1的个数。定义函数get(x)返回x的二进制中1的个数(get(x)代表在x对应放置状态下该行放置国王的个数),则上述正向递推过程可以表示为dp[i+1][ss][k+get(ss)]+=dp[i][s][k]。逆向思考则确定最终的状态转移方程为dp[i][s][k]+=dp[i-1][ss][k-get(s)](此处的ss代表第i-1行的放置状态)。如何获取数 x x x对应二进制中1的个数?看一下->这篇博客。
5.边界处理:在第一行中,放置状态为s且刚好放置了get(s)个国王的方案数是1种。即dp[1][s][get(s)]=1。
6.时间复杂度分析:程序有四层循环,分别是第一层对行的枚举(N行)、第二层对当前行放置状态s的枚举(共 2 N 2^{N} 2N种状态),第三层对上一行放置状态的枚举(共 2 N 2^{N} 2N种状态),第四层对放置国王数k的枚举(共K个)。时间复杂度粗略为 N K ∗ 2 2 N NK*2^{2N} NK22N,N最大取9,K最大取81, N K ∗ 2 2 N = 9 3 ∗ 2 18 ≈ 1 0 8 NK*2^{2N}=9^{3}*2^{18} \approx10^{8} NK22N=93218108,可见时间复杂度得到了很大的优化。
7.最终答案 r e s = ∑ s = 0 ( 1 < < N ) − 1 d p [ N ] [ s ] [ K ] res=\sum_{s=0}^{(1<<N)-1} dp[N][s][K] res=s=0(1<<N)1dp[N][s][K],即所有放置到最后一行且刚好放了K个国王的状态下的方案都合法,累加这些方案数即可。

#include<iostream>
     using namespace std;
     const int n=12;
     typedef long long LL;
     LL dp[n][1<<n][n*n];

     int get(int x){   //返回x对应的二进制中1的个数
     int cnt=0;
     while(x){
     x-=x&(-x);  //减去最低位的1  
     cnt++;
     }
     return cnt;
     }

     //判断数x是否是合法的放置状态
     int check1(int x){
     return (x&(x<<1))==0;
     }

      //判断x和y代表的放置状态是否冲突
     int check2(int x,int y){
     if(x&y) return 0;
     if((x<<1)&y) return 0;
     if(x&(y<<1)) return 0;
     return 1;
     }

     int main(){
     int N,K;
     cin>>N>>K;
     for(int i=1;i<=N;i++){      //逐行放置
        for(int s=0;s<(1<<N);s++){   //枚举所有可能的放置状态
            if(check1(s)){      //若s为合法的放置状态
              if(i==1) {dp[i][s][get(s)]=1;}  //边界处理
                else{          
                   for(int ss=0;ss<(1<<N);ss++){   //枚举上一行的放置状态   
                     if(check2(s,ss)&&check1(ss)){   //检查当前行与上一行是否冲突 
                         for(int k=get(s);k<=K;k++){
                            dp[i][s][k]+=dp[i-1][ss][k-get(s)];
                        }
                    }
                }
              }
            }
        }
     }
   
      //统计答案
     LL res=0;
     for(int s=0;s<(1<<N);s++) res+=dp[N][s][K];   
     cout<<res<<endl;
     return 0;
     }



  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值