老潘的博客
码龄8年
  • 1,358,176
    被访问
  • 134
    原创
  • 6,179
    排名
  • 492
    粉丝
关注
提问 私信

个人简介:老潘的博客,程序员眸中的fantasy life,分享AI技术干货,让大家少走弯路~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2014-07-05
博客简介:

老潘的博客

博客描述:
如果你与我志同道合于此,很愿意与你交流 ;如果你喜欢我的内容,欢迎关注和支持
查看详细资料
  • 5
    领奖
    总分 1,327 当月 8
个人成就
  • 博客专家认证
  • 获得463次点赞
  • 内容获得241次评论
  • 获得1,507次收藏
  • GitHub 获得1,078Stars
创作历程
  • 5篇
    2022年
  • 29篇
    2021年
  • 2篇
    2020年
  • 5篇
    2019年
  • 12篇
    2018年
  • 90篇
    2017年
  • 8篇
    2014年
成就勋章
TA的专栏
  • TensorRT
    6篇
  • 一些工程经验
    5篇
  • 编程工具
    4篇
  • OpenCV
    1篇
  • JS
    1篇
  • 游戏开发
    1篇
  • c/c++ 技巧
    24篇
  • STM32-Cortex-M3学习
    2篇
  • django项目
    2篇
  • windows电脑维护以及故障处理
    2篇
  • 编程语言杂烩
    15篇
  • 服务器运营
    9篇
  • python
    46篇
  • pycharm
    7篇
  • 深度学习
    63篇
  • 机器学习
    36篇
  • ACM结题报告
    3篇
  • 算法设计与分析
    6篇
  • 英语学习
    2篇
  • linux
    8篇
  • centos
    3篇
  • TensorFlow
    2篇
  • 数学知识
    1篇
  • pytorch
    18篇
  • wordpress
    2篇
  • 设计模式
    1篇
  • 杂物家友
    8篇
TA的推广
兴趣领域 设置
  • 人工智能
    opencv神经网络pytorch
联系我
老潘的博客,程序员眸中的fantasy life,分享AI技术干货,帮助大家少走弯路
如果你喜欢我的内容,欢迎关注和支持
如果对文章有疑问,欢迎关注「oldpan博客」公众号联系我
微信扫码关注后可获取老潘整理的AI基础以及进阶资料,一直在更新!
3d7e2c8ab80aa9da1f52fda5c8bed2fe.png
个人网站 :
https://oldpan.me/
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

算法工程师老潘总结的一些经验

算法工程师老潘总结的一些经验前一段时间一直在优化部署模型。这几天终于来了需求,又要开始重操训练一些新模型了。趁着这次机会总结了下之前的一些训练模型的笔记,可能比较杂,抛砖引玉!当然这是不完全统计的经验,除了训练部分,还有很多部署的坑没有写。算法工程师50%的时间是和数据打交道,有时候拷贝数据(分别从多个文件夹拷贝到某一文件夹);有时候筛选数据(过滤掉一些质量不好的数据);有时候把数据换个名字、加个前缀(为了后续训练的时候区分数据的特性,比如多尺度、多种图像增强策略)等等,这些工作可能一个月要重复n多次
原创
发布博客 2022.05.30 ·
109 阅读 ·
0 点赞 ·
0 评论

AI工程师的笔记本环境配置

还是爱折腾...前一阵子买了个新的笔记本电脑,幻13-3050TI-1T版本,全能本,CPU是8核心16线程的标压版AMD锐龙9-5900HS,显卡是NVIDIA-3050TI,重量和macbook差不多,都是1.4kg,便携、可以改变形态。大概长这样:可以变换3种形态(莫名有种兴奋感),可能也有人问我为啥不买macbook,没买的原因有两点:macbook不支持nvidia显卡,这个无解,没办法本地跑AI代码,只能远程服务器macbook用腻了,有一点审美疲劳,新版的macbook pro也
原创
发布博客 2022.05.21 ·
492 阅读 ·
0 点赞 ·
1 评论

实践torch.fx第一篇——基于Pytorch的模型优化量化神器

第一篇——什么是torch.fx今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇:什么是torch.fx基于torch.fx做量化基于torch.fx量化部署到TensorRT 本文对应第一篇,主要介绍torch.fx和基本使用方法。废话不多说,直接开始吧!什么是Torch.FXtorch.fx是Pytorch 1.8出来的一套工具或者说一个库,是做python-to-python code transformation
原创
发布博客 2022.05.21 ·
424 阅读 ·
1 点赞 ·
1 评论

一起实践量化番外篇——TensorRT-8的量化细节

好久不见各位~这篇文章很久之前写完一直没有整理,最近终于是整理差不多了,赶紧发出来。本文接着《必看部署系列-神经网络量化教程:第一讲!》这一篇接着来说。上一篇主要说了量化的一些基本知识、为啥要量化以及基本的对称量化这些概念知识点。按理说应该继续讲下非对称量化、量化方式等等一些细节,不过有一段时间在做基于TensorRT的量化,需要看下TensorRT的量化细节,就趁这次机会讲一下。算是量化番外篇。这是偏实践的一篇,主要过一下TensorRT对于explict quantization的流程和通用的量
原创
发布博客 2022.04.19 ·
330 阅读 ·
2 点赞 ·
0 评论

PyTorch and torchvision versions are incompatible问题

Couldn’t load custom C++ ops. This can happen if your PyTorch and torchvision versions are incompatible一般来说,在pip install torvhvision会自动找到相应的pytorch版本进行安装,这个时候没啥问题。但是假如我们强行使两个版本不一致,比如pip install xxx --no-deps这样,肯定就会报错。解决方法就是使pytorch和torchvision版本一致:如.
原创
发布博客 2022.03.01 ·
1360 阅读 ·
1 点赞 ·
0 评论

一起实践神经网络INT8量化系列教程(一)

开篇老潘刚开始接触神经网络量化是2年前那会,用NCNN和TVM在树莓派上部署一个简单的SSD网络。那个时候使用的量化脚本是参考于TensorRT和NCNN的PTQ量化(训练后量化)模式,使用交叉熵的方式对模型进行量化,最终在树莓派3B+上部署一个简单的分类模型(识别剪刀石头布静态手势)。这是那会的一篇文章,略显稚嫩哈哈:一步一步解读神经网络编译器TVM(二)——利用TVM完成C++端的部署转眼间过了这么久啦,神经网络量化应用已经完全实现大面积落地了、相比之前成熟多了!我工作的时候虽然也简单接
原创
发布博客 2021.11.23 ·
1769 阅读 ·
4 点赞 ·
1 评论

聊聊阅读源码那些事儿

大家好我是老潘,我们又见面了~如果下文中有格式方面的错误,可以点击这里查看原文。老潘的AI宝藏内容也总结在这里!看源码本身就是一种学习,就像小时候写作文一样,看别人的好作文也就会模仿一些好的句子,一些好的段落。看源码也一样,不同大厂的源码写的风格也不一样,惯用的技巧也不一样,强调的规范也不一样,使用的C++标注也不一样(C++11、C++14等等)。但是如果想要深入学习一个框架的底层,看源码是必须的。我看过不少源码,也模仿过一些大厂源码的例子。最常见的例子就是抽象类、工厂、单例、注册等等机制
原创
发布博客 2021.10.04 ·
158 阅读 ·
0 点赞 ·
0 评论

AI算法工程师的含泪经验(二)

大家好我是老潘,我们又见面了~如果下文中有格式方面的错误,可以点击这里查看原文。老潘的AI宝藏内容也总结在这里!算法工程师50%的时间是和数据打交道,有时候拷贝数据(分别从多个文件夹拷贝到某一文件夹);有时候筛选数据(过滤掉一些质量不好的数据);有时候把数据换个名字、加个前缀(为了后续训练的时候区分数据的特性,比如多尺度、多种图像增强策略)等等,这些工作可能一个月要重复n多次,因此最好总结起来;可以用Python或者shell脚本来处理,或者用jupyter notebook存自己常用的文件处理.
原创
发布博客 2021.10.04 ·
145 阅读 ·
0 点赞 ·
0 评论

关于 XX error 1 querying major version的错误

Error Code 1: Myelin (cuBLASLt error 1 querying major version.)这种错误是因为没有找到合适的版本信息,在某些库寻找动态链接库的时候,会根据so后面的版本信息去寻找,如果没有找到则会报错。解决方法:将寻找路径的.so所有的版本后缀都设置一遍就OK~比如这样,使用ln -s libcublasLt.so.11 libcublasLt.so.11.5.2.43 命令设置好对应的so就可以: libcublasLt.so -> lib
原创
发布博客 2021.09.23 ·
318 阅读 ·
0 点赞 ·
0 评论

分享下AI算法工程师的一些宝贵经验(一)

大家好我是老潘,持续分享深度学习质量文,也会闲谈程序员的美好生活~宝藏内容以及如何找到老潘:老潘的AI宝藏内容也欢迎来我的博客做访:老潘的博客如果你对AI、深度学习、目标检测、图像分割、AI模型部署、模型优化等话题感兴趣,不妨尝试下关注老潘~前一段时间一直在优化部署模型。这几天终于来了需求,又要开始重操训练一些新模型了。趁着这次机会总结了下之前的一些训练模型的笔记,可能比较杂,抛砖引玉!当然这是不完全统计的经验,除了训练部分,还有很多部署的坑没有写。算法工程师50%的时间是和数据打交道,有.
原创
发布博客 2021.09.18 ·
118 阅读 ·
0 点赞 ·
0 评论

C++中namespace的作用

C++作用域的主要用法就是减少名称互相冲突性的可能性。这个名称可以是变量、可以是函数、可以是类名称也可以是等等等等,总之是有名字的东西。因此标准C++引入关键字namespace(命名空间/名字空间/名称空间),可以更好地让我们控制标识符的作用域。来看下使用规则。一般的用法//定义一个名字为A的命名空间(变量、函数)namespace A { int a = 100;}namespace B { int a = 200;}void test(){ //A::a
原创
发布博客 2021.08.30 ·
183 阅读 ·
1 点赞 ·
1 评论

APPLE-M1使用VSCODE调试lldb无法正常使用

最近使用Mac-mini-m1芯片的电脑在debug代码。使用的VSCODE进行调试,launch.json也设置好了,但是启动调试的时候总会出现:ERROR: Unable to start debugging. Unexpected LLDB output from command "-exec-run". process exited with status -1 (attach failed)这样的问题。不过在VSCODE外头通过lldb ./demo是可以的。不过还是找到了解决方案…在M1芯
原创
发布博客 2021.08.29 ·
1538 阅读 ·
3 点赞 ·
2 评论

OpenCV中minAreaRect的使用说明

class CV_EXPORTS RotatedRect{public: //! various constructors RotatedRect(); RotatedRect(const Point2f& center, const Size2f& size, float angle); RotatedRect(const CvBox2D& box); //! returns 4 vertices of the rectangle
原创
发布博客 2021.08.19 ·
2182 阅读 ·
0 点赞 ·
0 评论

遇到torchvision-op无法调用的问题

在使用torchvision的op的时候,比如from torchvision.ops.nms如果遇到以下的问题:Couldn’t load custom C++ ops. This can happen if your PyTorch andtorchvision versions are incompatible, or if you had errors while compilingtorchvision from source. For further information on the
原创
发布博客 2021.08.18 ·
1094 阅读 ·
1 点赞 ·
5 评论

想要的AI部署前沿技术都在这里了!

不得不相信英伟达总能给我们惊喜,老潘作为一名深度学习从业者以及游戏爱好者,对于这种与AI、GPU、并行计算相关的话题一直都是比较感兴趣。作为深度学习第一大硬件平台的英伟达,我们自然熟悉的不能再熟悉了。英伟达的硬件足够优秀,但也需要足够的软件开发者去支撑才能真正的令其发展起来,对此英伟达是“上心的”。因为毕竟只有大家都用、大家都觉着好用、你也觉着好用,你才会用英伟达的产品,才会用它的GPU去做一些你感兴趣的事情(当然英伟达就可以卖钱啦)。这也就是生态。其实用了比较长时间英伟达的产品(显卡、嵌入式版本系
原创
发布博客 2021.08.15 ·
579 阅读 ·
1 点赞 ·
1 评论

老潘的AI部署以及工业落地学习之路

Hello我是老潘,好久不见各位。最近在复盘今年上半年做的一些事情,不管是训练模型、部署模型搭建服务,还是写一些组件代码,零零散散是有一些产出。虽然有了一点点成果,但仍觉着缺点什么。作为深度学习算法工程师,训练模型和部署模型是最基本的要求,每天都在重复着这个工作,但偶尔静下心来想一想,还是有很多事情需要做的:模型的结构,因为上线业务需要,更趋向于稳定有经验的,未探索一些新的结构模型的加速仍然不够,还没有压榨完GPU的全部潜力深感还有很多很多需要学习的地方啊。既然要学习,那么学习路线就显得比
原创
发布博客 2021.08.08 ·
519 阅读 ·
5 点赞 ·
3 评论

TensorRT详细入门指北,如果你还不了解TensorRT,过来看看吧

首发于TensorRT详细入门指北,如果你还不了解TensorRT,过来看看吧!,最新回复以及交流请看这里~前言大名鼎鼎的TensorRT有多牛逼就不多说了,因为确实很好用。作为在英伟达自家GPU上的推理库,这些年来一直被大力推广,更新也非常频繁,issue反馈也挺及时,社区的负责人员也很积极,简直不要太NICE。只是TensorRT的入门门槛略微高一点点,劝退了一部分玩家。一部分原因是官方文档也不够详细(其实也挺细了,只不过看起来有些杂乱)、资料不够;另一部分可能是因为TensorRT比较底层,需
原创
发布博客 2021.06.14 ·
4267 阅读 ·
27 点赞 ·
5 评论

想提速但TensorRT的FP16不得劲?怎么办?在线支招!

问题的开始前些天尝试使用TensorRT转换一个模型,模型用TensorFlow训练,包含LSTM+Transform+CNN,是一个典型的时序结构模型,包含编码解码结构,暂称为debug.onnx吧。这个debug.onnx使用tf2onnx导出,导出后tf2onnx会自动对这个onnx做一些优化,例如常量折叠、算子融合等等一些常规操作,一般来说这些操作不会影响网络结构(也会出现影响的情况!之后老潘会说),而且有助于模型的优化。然后导出来之后使用onnxruntime简单测试一下导出模型是否正确,是
原创
发布博客 2021.04.11 ·
1557 阅读 ·
3 点赞 ·
1 评论

主机回来以及,简单的环境配置(RTX3070+CUDA11.1+CUDNN+TensorRT)

紧接着前几天的事:特殊的日子,想起了当年的双(1080TI)显卡装机实录和炼丹炉买不起了:聊一聊这段日子的显卡行情之后,决定买一台整机玩玩。而现在,主机终于回!来!了!主机回来干什么,当然是——配置环境。老潘之前也有一些配置环境的文章,可以参考:ubuntu16.04下安装NVIDIA(cuda)-gtx965m相关步骤以及问题pytorch-0.2成功调用GPU:ubuntu16.04,Nvidia驱动安装以及最新cuda9.0与cudnnV7.0配置win10下安装使用pytor
原创
发布博客 2021.03.07 ·
1548 阅读 ·
5 点赞 ·
5 评论

买不起炼丹炉了~聊一聊近期的显卡情况

首发于公众号「oldpan博客」原文链接前言前一阵子突然有了配主机的想法。呃,当然是为了搞深度学习。想象一下,亲手买下自己心仪的配件,然后用心组装起来,闻着显卡的香气,啊,满满的成就感。显卡预想着上RTX-3080或者3070,嗯,毕竟老潘已经是打工人了,有点小钱,除了上缴,也应该犒劳犒劳一下自己了。毕竟要搞深度学习嘛。打开手机,看看京东上显卡卖多少钱吧,记得30系列好像又便宜性能又强。嗯?哇靠?!什么情况!!显卡涨价涨到姥姥家去了!目前的情况目前的情况,简单说一句,就是显卡全线.
原创
发布博客 2021.03.02 ·
666 阅读 ·
0 点赞 ·
0 评论
加载更多