生成函数(母函数)

前言

昨天晚上学习了生成函数。终于从多项式的深渊中爬出来找到了一丝希望。写篇博客纪念一下似乎友善一些的生成函数(母函数)。(叫生成函数好像比母函数好听点)

定义

生成函数是用于对应一个无穷系列的幂函数。
一般的生成函数形式为:
G ( x ) = g 0 + g 1 x + g 2 x . . . = ∑ n ≥ 0 g n x n G(x)=g_0+g_1x+g_2x...=\sum_{n≥0}g_nx^n G(x)=g0+g1x+g2x...=n0gnxn
也可以将系数提出来写成:
< g 0 , g 1 , g 2 , . . . , g n > <g_0,g_1,g_2,...,g_n> <g0,g1,g2,...,gn>
例如, < 1 , 1 , 1 , 1 , 1 , . . . >   ⟺ <1,1,1,1,1,...>\ \Longleftrightarrow <1,1,1,1,1,...>  G ( x ) = 1 + x + x 2 + . . . G(x)=1+x+x^2+... G(x)=1+x+x2+...

闭形式

对于生成函数 G ( x ) = 1 + x + x 2 + . . . = ∑ n ≥ 0 x n G(x)=1+x+x^2+...= \sum_{n≥0}x^n G(x)=1+x+x2+...=n0xn,可将它看做一个公比为x的等比数列。根据等比数列求和公式,它等价于
1 − x n 1 − x \frac{1-x^n}{1-x} 1x1xn
,在这里,我们若设 0 < x < 1 0<x<1 0<x<1,因为 n n n是无穷大,所以 x n x^n xn趋近于 0 0 0,可以约掉,得
1 1 − x \frac{1}{1-x} 1x1
当然,这里是因为项数无限才能这样约,对于有限项是不能直接约的。

基本操作

都比较显然,不详细说明

放缩

c g 0 , c g 1 , c g 2 . . . cg_0,cg_1,cg_2... cg0,cg1,cg2...=
c G ( x ) = g 0 + g 1 x + g 2 x 2 + . . . cG(x)=g_0+g_1x+g_2x^2+... cG(x)=g0+g1x+g2x2+...

加减法

< f 0 ± g 0 , f 1 ± g 1 , . . . > <f_0\pm g_0,f_1\pm g_1,...> <f0±g0,f1±g1,...>=
F ( x ) ± G ( x ) = ( f 0 ± g 0 ) + ( f 1 ± g 1 ) x + ( f 2 ± g 2 ) + . . . F(x)\pm G(x)=(f_0\pm g_0)+(f_1\pm g_1)x+(f_2\pm g_2)+... F(x)±G(x)=(f0±g0)+(f1±g1)x+(f2±g2)+...

右移

x k G ( x ) = g 0 x k + g 1 x k + 1 + g 2 x k + 2 + . . . x^kG(x)=g_0x^k+g_1x^{k+1}+g_2x^{k+2}+... xkG(x)=g0xk+g1xk+1+g2xk+2+...

求导

G ( x ) = g 0 + g 1 x + g 2 x 2 + g 3 x 3 + . . . G(x)=g_0+g_1x+g_2x^2+g_3x^3+... G(x)=g0+g1x+g2x2+g3x3+...
G ′ ( x ) = g 1 + 2 g 2 x + 3 g 3 x 2 G'(x)=g_1+2g_2x+3g_3x^2 G(x)=g1+2g2x+3g3x2
举个栗子:
G ( x ) = 1 + x + x 2 + x 3 + . . . = 1 x − 1 G(x)=1+x+x^2+x^3+...=\frac{1}{x-1} G(x)=1+x+x2+x3+...=x11
G ′ ( x ) = 1 + 2 x + 3 x 2 + 4 x 3 + . . . = 1 ( x − 1 ) 2 G'(x)=1+2x+3x^2+4x^3+...=\frac{1}{(x-1)^2} G(x)=1+2x+3x2+4x3+...=(x1)21
< 1 , 2 , 3 , . . . >   ⟺   1 ( x − 1 ) 2 <1,2,3,...>\ \Longleftrightarrow\ \frac{1}{(x-1)^2} <1,2,3,...>  (x1)21

卷积

S ( x ) = F ( x ) ⋅ G ( x ) = ( f 0 + f 1 x + f 2 x 2 + . . . ) ( g 0 + g 1 x + g 2 x 2 + . . . ) S(x)=F(x)\cdot G(x)=(f_0+f_1x+f_2x^2+...)(g_0+g_1x+g_2x^2+...) S(x)=F(x)G(x)=(f0+f1x+f2x2+...)(g0+g1x+g2x2+...)
s i = ∑ j = 0 j = i f j g i − j s_i=\sum_{j=0}^{j=i}f_jg_{i-j} si=j=0j=ifjgij

简单序列对应的母函数

G ( x ) = ( 1 + x + x 2 + x 3 + . . . ) m = 1 ( 1 − x ) m G(x)=(1+x+x^2+x^3+...)^m=\frac{1}{(1-x)^m} G(x)=(1+x+x2+x3+...)m=(1x)m1

x 1 + x 2 + x 3 + . . . + x m = k x_1+x_2+x_3+...+x_m=k x1+x2+x3+...+xm=k
g k g_k gk为这个不定方程非负整数解的个数:
g k = C m + k − 1 m − 1 g_k=C_{m+k-1}^{m-1} gk=Cm+k1m1
得到:
1 ( 1 − x ) m = < 1 , C m m − 1 , C m + 1 m − 1 , C m + 2 m − 1 , . . . > \frac{1}{(1-x)^m}=<1,C_{m}^{m-1},C_{m+1}^{m-1},C_{m+2}^{m-1},...> (1x)m1=<1,Cmm1,Cm+1m1,Cm+2m1,...>

一道例题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

指数型母函数

咕咕咕

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值