题目
题意
题意很简单。有 n n n 个点 m m m 条边的无向图,对于每次固定选第 i i i 条边,求最小生成树。
思路
首先,暴力每次先选第 i i i 条边,然后做最小生成树。显然是 O ( n m ) O(nm) O(nm) 的。
那么我们的正解是怎样的呢?猜测是固定选某一条边,然后 O ( 1 ) O(1) O(1) 或者 O ( l o g ) O(log) O(log) 地进行另一条边的转移。
考虑先不固定边得到最小生成树。
如果一条边本身就在最小生成树上,那么最小生成树不变。
对于其他边呢?若这次强制练的边两端点为 a a a 和 b b b,那么似乎可以贪心地找 a a a 或 b b b 为端点的最大的一条边删去。
那么似乎可以做了,而且还是 O ( m ) O(m) O(m) 的?总感觉哪里不对啊,看眼题解——哦,原来自己画图时画的是个三角环,以为是 u u u 或 v v v 为端点的边,其实应该是 u u u 到 v v v 路径上的最大的边。
那么,我们如何维护 u u u 到 v v v 路径上最大的边呢?维护 S T \tt ST ST 表, f [ i ] [ j ] : i f[i][j]:i f[i][j]:i 点往上 2 j 2^j 2j 步的最大的权值。那么似乎就很简单了——若 u u u 和 v v v 是祖先和儿子关系,那么直接往上爬。若不是祖先和儿子关系,就往 L C A \tt LCA LCA 爬。
Code:
代码略长,码着还是挺舒服的。
struct Edge
{
LL u, v, w, Index;
Edge(){}
Edge(LL U,LL V,LL W)
{
u = U;
v = V;
w = W;
}
friend bool operator <(Edge A,Edge B)
{
return A.w < B.w;
}
}Eg[MAXN], Ks[MAXN];
struct node
{
LL v, w;
node(){}
node(LL V,LL W)
{
v = V;
w = W;
}
};
vector<node> G[MAXN];
LL n, m, f[MAXN][MAXK], Dep[MAXN], St[MAXN][MAXK], Root;
void Build(LL x,LL Pre,LL Qb)
{
Dep[x] = Dep[Pre] + 1;
f[x][0] = Pre; St[x][0] = Qb;
for (Int i = 1; i < MAXK; ++ i)
f[x][i] = f[f[x][i - 1]][i - 1], St[x][i] = Max(St[x][i - 1], St[f[x][i - 1]][i - 1]);
int l = G[x].size();
for (Int i = 0; i < l; ++ i)
{
LL to = G[x][i].v;
if (to == Pre)
continue;
Build(to, x, G[x][i].w);
}
}
inline void Adjust(LL &u,LL Tar)
{
for (Int i = 19; i >= 0; -- i)
if (Dep[f[u][i]] >= Tar)
u = f[u][i];
}
inline LL LCA(LL u,LL v)
{
if (Dep[u] > Dep[v])
Adjust(u, Dep[v]);
else if (Dep[u] < Dep[v])
Adjust(v, Dep[u]);
if (u == v)
return (u + v) / 2;
for (Int i = 19; i >= 0; -- i)
if (f[u][i] != f[v][i])
u = f[u][i], v = f[v][i];
return f[u][0];
}
bool Used[MAXN];
LL Fa[MAXN];
inline void MakeSet(LL x)
{
for (Int i = 1; i <= x; ++ i)
Fa[i] = i;
}
LL FindSet(LL x)
{
if (Fa[x] != x)
Fa[x] = FindSet( Fa[x] );
return Fa[x];
}
LL Begin;
void Kruscal()
{
sort(Ks + 1, Ks + 1 + m);
LL MST = 0;
MakeSet( n );
for (Int i = 1; i <= m && MST < n - 1; ++ i)
{
LL Fu = FindSet( Ks[i].u );
LL Fv = FindSet( Ks[i].v );
if (Fu == Fv)
continue;
G[Ks[i].u].push_back(node(Ks[i].v, Ks[i].w));
G[Ks[i].v].push_back(node(Ks[i].u, Ks[i].w));
Root = Ks[i].u;
Used[Ks[i].Index] = 1;
Fa[Fu] = Fv;
MST ++;
Begin += Ks[i].w;
}
}
LL Ans[MAXN];
LL Query(LL x,LL to)
{
LL Res = 0;
while (x != to)
{
LL Len = log2(Dep[x] - Dep[to]);
Res = Max(Res, St[x][Len]);
x = f[x][Len];
}
return Res;
}
int main()
{
read( n ); read( m );
for (Int i = 1; i <= m; ++ i)
{
read( Eg[i].u );
read( Eg[i].v );
read( Eg[i].w );
Eg[i].Index = i;
Ks[i] = Eg[i];
}
Kruscal();
Build(Root, Root, 0);
for (Int i = 1; i <= m; ++ i)
{
if ( Used[i] )
{
Ans[i] = Begin;
continue;
}
LL Mid = LCA(Eg[i].u, Eg[i].v);
LL Ud = Query(Eg[i].u, Mid);
LL Vd = Query(Eg[i].v, Mid);
Ans[i] = Begin + Eg[i].w - Max(Ud, Vd);
}
for (Int i = 1; i <= m; ++ i)
printf("%lld\n", Ans[i]);
return 0;
}