倍增求LCA

倍增求 LCA

  设 f i , j f_{i, j} fi,j 表示节点 i 向上的 2 j 2^j 2j 辈祖先,我们就能得到: f i , j = f f i , j − 1 , j − 1 f_{i, j} = f_{f{i, j-1}, j-1} fi,j=ffi,j1,j1我们据此来初始化一个 f,如果节点x, y 在 2 j 2^j 2j 辈中有公共祖先那么我们就可以用 O ( j ) O(j) O(j)(j一般来说取30就够用了) 的复杂度求出 LCA(x, y)。

#include<bits/stdc++.h>
using namespace std;

#define SIZE 
#define MAXN 100100
#define MAXM 2 * MAXN

int n = 0; int m = 0;

int tot = 0;
int first[MAXN] = { 0 };
int   nxt[MAXM] = { 0 };
int    to[MAXM] = { 0 };

void add(int x, int y){
	nxt[++tot] = first[x];
	first[x] = tot; to[tot] = y;
}

int dep[MAXN] = { 0 };
int f[MAXN][35] = { 0 };

/* f[x][i] = f[f[x][i-1]][i-1], f[x][i] --> x 向上 2^i 辈的祖先 */ 
void prework(int u, int fa){
	dep[u] = dep[fa] + 1;
	for(int i = 0; i <= 30; i++){
		f[u][i + 1] = f[f[u][i]][i];
	}
	for(int e = first[u]; e; e = nxt[e]){
		int v = to[e];
		if(v != fa){
			f[v][0] = u;
			prework(v, u);
		}
	}
}

int queryLCA(int x, int y){
	if(dep[x] < dep[y]){
		swap(x, y);
	}
	for(int i = 30; i >= 0; i--){
		if(dep[f[x][i]] >= dep[y]){
			x = f[x][i];
		}
		if(x == y){
			return x;
		}
	}
	for(int i = 30; i >= 0; i--){
		if(f[x][i] != f[y][i]){
			x = f[x][i];
			y = f[y][i];
		}
	}
	return f[x][0];
}

int main(){
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= m; i++){
		int x = 0; int y = 0;
		scanf("%d%d", &x, &y);
		add(x, y);
	}
	
	prework(1, 0);
	
	printf("%d\n", queryLCA(4, 7));
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值