倍增求 LCA
设 f i , j f_{i, j} fi,j 表示节点 i 向上的 2 j 2^j 2j 辈祖先,我们就能得到: f i , j = f f i , j − 1 , j − 1 f_{i, j} = f_{f{i, j-1}, j-1} fi,j=ffi,j−1,j−1我们据此来初始化一个 f,如果节点x, y 在 2 j 2^j 2j 辈中有公共祖先那么我们就可以用 O ( j ) O(j) O(j)(j一般来说取30就够用了) 的复杂度求出 LCA(x, y)。
#include<bits/stdc++.h>
using namespace std;
#define SIZE
#define MAXN 100100
#define MAXM 2 * MAXN
int n = 0; int m = 0;
int tot = 0;
int first[MAXN] = { 0 };
int nxt[MAXM] = { 0 };
int to[MAXM] = { 0 };
void add(int x, int y){
nxt[++tot] = first[x];
first[x] = tot; to[tot] = y;
}
int dep[MAXN] = { 0 };
int f[MAXN][35] = { 0 };
/* f[x][i] = f[f[x][i-1]][i-1], f[x][i] --> x 向上 2^i 辈的祖先 */
void prework(int u, int fa){
dep[u] = dep[fa] + 1;
for(int i = 0; i <= 30; i++){
f[u][i + 1] = f[f[u][i]][i];
}
for(int e = first[u]; e; e = nxt[e]){
int v = to[e];
if(v != fa){
f[v][0] = u;
prework(v, u);
}
}
}
int queryLCA(int x, int y){
if(dep[x] < dep[y]){
swap(x, y);
}
for(int i = 30; i >= 0; i--){
if(dep[f[x][i]] >= dep[y]){
x = f[x][i];
}
if(x == y){
return x;
}
}
for(int i = 30; i >= 0; i--){
if(f[x][i] != f[y][i]){
x = f[x][i];
y = f[y][i];
}
}
return f[x][0];
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i++){
int x = 0; int y = 0;
scanf("%d%d", &x, &y);
add(x, y);
}
prework(1, 0);
printf("%d\n", queryLCA(4, 7));
return 0;
}