关于二进制翻转(Kathy 函数?)

二进制翻转

一道题

  今天在看关于数位 DP 的东西的时候看到这这道题:luogu P2235 Kathy 函数。在这道题里面给出了一个神秘的函数(就是 Kathy 函数啦),它长这样:
{ f ( 1 ) = 1 f ( 3 ) = 3 f ( 2 n ) = f ( n ) f ( 4 n + 1 ) = 2 f ( 2 n + 1 ) − f ( n ) f ( 4 n + 3 ) = 3 f ( 2 n + 1 ) − 2 f ( n ) \begin{cases} \begin{aligned} &f(1) = 1 \\ &f(3) = 3\\ &f(2n) = f(n)\\ &f(4n+1) = 2f(2n+1) - f(n)\\ &f(4n+3) = 3f(2n+1) - 2f(n) \end{aligned} \end{cases} f(1)=1f(3)=3f(2n)=f(n)f(4n+1)=2f(2n+1)f(n)f(4n+3)=3f(2n+1)2f(n)
  就光看它的这个样子就长得不像什么正常函数。然后我就在那里研究这玩意儿的性质,搞了可能有一个多小时,发现自己啥都没研究出来(我太蒻了),就只是找到了一堆像题目中说的那种 f ( n ) = n f(n) = n f(n)=n 的数(打表打出来的,程序放在下面)。比如 0 ~ 100 的这种数有: 1,3,5,7,9,15,17,21,27,31,33,45,51, 63,65,73,85,93, 99。前几个数看起来还可能有点规律,但是后面的数就开始越来越奇怪了。

  打表代码:

#include<bits/stdc++.h>
using namespace std;

int kathy(int x){
	if(x == 1 or x == 3) return x;
	if(x % 2 == 0) return kathy(x / 2);
	if(x % 4 == 1){
		int n = x / 4;
		return 2 * kathy(2 * n + 1) - kathy(n);
	}
	if(x % 4 == 3){
		int n = x / 4;
		return 3 * kathy(2 * n + 1) - 2 * kathy(n);
	}
}

int main(){
	for(int i = 1; i <= 100; i++){
		if(i == kathy(i)) printf("%d\n", i);
	}
	return 0;
}

  然后我就又把 1000 之内的这些数给打出来了:
1 , 3 , 5 , 7 , 9 , 15 , 17 , 21 , 27 , 31 , 33 , 45 , 51 , 63 , 65 , 73 , 85 , 93 , 99 , 107 , 119 , 127 , 129 , 153 , 165 , 189 195 , 219 , 231 , 255 , 257 , 273 , 297 , 313 , 325 , 341 , 365 , 381 , 387 , 403 , 427 , 443 , 455 , 471 , 495 , 511 513 , 561 , 585 , 633 , 645 , 693 , 717 , 765 , 771 , 819 , 843 , 891 , 903 , 951 , 975 \begin{aligned} &1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, 65, 73, 85, 93, 99, 107, 119, 127 ,129, 153, 165, 189\\ &195, 219, 231, 255, 257, 273, 297, 313, 325, 341, 365, 381, 387, 403, 427, 443, 455, 471, 495, 511\\ &513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975 \end{aligned} 1,3,5,7,9,15,17,21,27,31,33,45,51,63,65,73,85,93,99,107,119,127,129,153,165,189195,219,231,255,257,273,297,313,325,341,365,381,387,403,427,443,455,471,495,511513,561,585,633,645,693,717,765,771,819,843,891,903,951,975
  很好,更没有规律了。我唯一看出来的就是他们都是奇数,而且时不时就来两个相邻的奇数比如前面的 ( 1 , 3 , 5 , 7 , 9 ) (1, 3, 5, 7, 9) (1,3,5,7,9) ( 15 , 17 ) (15, 17) (15,17) ( 31 , 33 ) (31, 33) (31,33) ( 63 , 65 ) (63, 65) (6365);等等… 再之后就啥都看不出来了(我太蒻了)。
  于是我去看了题解然后就有了这篇文章。

一个证明

  看了题解之后我整个人都不好了,基本上每一篇题解都会说到这个函数就是完成二进制翻转的函数,但是好像都没有给出证明。
  二进制翻转就是说把这个数的二进制反过来再转成 10 进制,就比如说这样:4 的二进制是 4 = ( 100 ) 2 4 = (100)_2 4=(100)2,然后把它的二进制颠倒过来变成 ( 001 ) 2 (001)_2 (001)2 然后再转化成 10 进制就是 1.所以 4 的二进制翻转就是 1。
  因为都没有证明,所以我就想代几个数进去看看能不能自己想办法证出来。结果代了好几个数之后只是确认了他就是完成二进制翻转的函数,然而没有提供任何思路给我。然后我又在网上继续翻,然后就找到了洛谷上的一片题解证明了这个函数的作用(虽然不知道这玩意儿是咋构造出来的,但起码知道了他为啥能这样用了)。下面是我用我的理解写出的证明过程,原文传送门在此:Kathy 函数的题解之一

证明过程

  约定: n ′ n' n 表示数字 n n n 翻转之后的结果。比如 n = 4 n = 4 n=4 n ′ n' n 就等于 1。
  首先 f ( 1 ) = 1 , f ( 2 ) = f ( 1 ) = 1 , f ( 3 ) = 3 f(1) = 1,f(2) = f(1) = 1,f(3) = 3 f(1)=1f(2)=f(1)=1f(3)=3 显然成立。
  然后对于第一个递推式: f ( 2 n ) = f ( n ) f(2n) = f(n) f(2n)=f(n) 来说,我们假设:
n = ( a 1 a 2 a 3 ⋯ a n ‾ ) 2 n = (\overline{a_1a_2a_3\cdots a_n})_2 n=(a1a2a3an)2
  那么 2n 的意思就是将 n 左移 1 位:
2 n = ( a 1 a 2 a 3 ⋯ a n 0 ‾ ) 2 2n = (\overline{a_1a_2a_3\cdots a_n0})_2 2n=(a1a2a3an0)2
  所以此时显然有 n ′ = ( 2 n ) ′ n' = (2n)' n=(2n)(去掉前导0)。也就是说 f ( n ) = n ′ f(n) = n' f(n)=n 的时候就有 f ( 2 n ) = f ( n ) = n ′ = ( 2 n ) ′ f(2n) = f(n) = n' = (2n)' f(2n)=f(n)=n=(2n)


  然后对于第二个递推式: f ( 4 n + 1 ) = 2 f ( 2 n + 1 ) − f ( n ) f(4n+1) = 2f(2n+1)-f(n) f(4n+1)=2f(2n+1)f(n),同样的我们还是设:
n = ( a 1 a 2 a 3 ⋯ a n ‾ ) 2 n = (\overline{a_1a_2a_3\cdots a_n})_2 n=(a1a2a3an)2
  则 2 n + 1 2n+1 2n+1是把 n 左移 1 为并在末位加 1, 4 n + 1 4n+1 4n+1 是把 n 左移两位并在末位加 1:
2 n + 1 = a 1 a 2 a 2 ⋯ a n 1 ‾ , 4 n + 1 = a 1 a 2 a 3 ⋯ a n 01 ‾ 2n+1 = \overline{a_1a_2a_2\cdots a_n1},4n+1 = \overline{a_1a_2a_3\cdots a_n01} 2n+1=a1a2a2an14n+1=a1a2a3an01
  我们就可以得到:
n ′ = a n a n − 1 ⋯ a 2 a 1 ‾ ( 2 n + 1 ) ′ = 1 a n a n − 1 ⋯ a 1 ‾ , ( 4 n + 1 ) ′ = 10 a n a n − 1 ⋯ a 1 ‾ n' = \overline{a_na_{n-1}\cdots a_2a_1}\\\\(2n+1)' = \overline{1a_na_{n-1}\cdots a_1},(4n+1)' = \overline{10a_na_{n-1}\cdots a_1} n=anan1a2a1(2n+1)=1anan1a1(4n+1)=10anan1a1
  则:
2 ( 2 n + 1 ) ′ − n ′ = 1 a n a n − 1 ⋯ a 1 0 ‾ − a n a n − 1 ⋯ a 2 a 1 ‾ = 1 a n a n − 1 ⋯ a 1 ‾ + ( 1 a n a n − 1 ⋯ a 1 ‾ − a n a n − 1 ⋯ a 2 a 1 ‾ ) = 1 a n a n − 1 ⋯ a 1 ‾ + 1000 ⋯ 0 ‾ ( n − 1 个 0 ) = 10 a n a n − 1 ⋯ a 1 ‾ = ( 4 n + 1 ) ′ \begin{aligned} 2(2n+1)' - n' = &\overline{1a_na_{n-1}\cdots a_10} - \overline{a_na_{n-1}\cdots a_2a_1}\\ = &\overline{1a_na_{n-1}\cdots a_1} + \Big(\overline{1a_na_{n-1}\cdots a_1} - \overline{a_na_{n-1}\cdots a_2a_1}\Big)\\ = &\overline{1a_na_{n-1}\cdots a_1} + \overline{1000\cdots 0}\qquad\qquad (n-1个0)\\ = &\overline{10a_na_{n-1}\cdots a_1} = (4n+1)' \end{aligned} 2(2n+1)n====1anan1a10anan1a2a11anan1a1+(1anan1a1anan1a2a1)1anan1a1+10000(n10)10anan1a1=(4n+1)
所以只要当 f ( 2 n + 1 ) = ( 2 n + 1 ) ′ f(2n+1) = (2n+1)' f(2n+1)=(2n+1) f ( n ) = n ′ f(n) = n' f(n)=n 的时候,就有 f ( 4 n + 1 ) = ( 4 n + 1 ) ′ f(4n+1) = (4n+1)' f(4n+1)=(4n+1)


  最后是第三个递推式: f ( 4 n + 3 ) = 3 f ( 2 n + 1 ) − 2 f ( n ) f(4n+3) = 3f(2n+1) - 2f(n) f(4n+3)=3f(2n+1)2f(n)。同样的我们设:
n = a 1 a 2 a 3 ⋯ a n ‾ n = \overline{a_1a_2a_3\cdots a_n} n=a1a2a3an
  于是我们有:
2 n = a 1 a 2 a 3 ⋯ a n 0 ‾ , 2 n + 1 = a 1 a 2 a 3 ⋯ a n 1 ‾ 4 n + 3 = a 1 a 2 a 3 ⋯ a n 11 ‾ 2n = \overline{a_1a_2a_3\cdots a_n0},2n+1 = \overline{a_1a_2a_3\cdots a_n1}\\ 4n+3 =\overline{a_1a_2a_3\cdots a_n11} 2n=a1a2a3an02n+1=a1a2a3an14n+3=a1a2a3an11
2 × n ′ = a n a n − 1 ⋯ a 1 0 ‾ ( 2 n + 1 ) ′ = 1 a n a n − 1 ⋯ a 1 ‾ , ( 4 n + 3 ) ′ = 11 a n a n − 1 ⋯ a 1 ‾ 2\times n' = \overline{a_na_{n-1}\cdots a_10} \\ (2n+1)' = \overline{1a_na_{n-1}\cdots a_1} , (4n+3)' = \overline{11a_na_{n-1}\cdots a_1} 2×n=anan1a10(2n+1)=1anan1a1(4n+3)=11anan1a1
  然后我们可以得到:
3 ( 2 n + 1 ) ′ − 2 n ′ = 1 a n a n − 1 ⋯ a 1 ‾ + ( 1 a n a n − 1 ⋯ a 1 ‾ + 1 a n a n − 1 ⋯ a 1 ‾ ) − a n a n − 1 ⋯ a 1 0 ‾ = 1 a n a n − 1 ⋯ a 1 ‾ + ( 1 a n a n − 1 ⋯ a 1 0 ‾ − a n a n − 1 ⋯ a 1 0 ‾ ) = 1 a n a n − 1 ⋯ a 1 ‾ + 1000 ⋯ 0 ‾ ( n + 1 个 0 ) = 11 a n a n − 1 ⋯ a 1 ‾ = ( 4 n + 3 ) ′ \begin{aligned} 3(2n+1)' - 2n' = &\overline{1a_na_{n-1}\cdots a_1} + \Big(\overline{1a_na_{n-1}\cdots a_1} + \overline{1a_na_{n-1}\cdots a_1}\Big) - \overline{a_na_{n-1}\cdots a_10}\\ = &\overline{1a_na_{n-1}\cdots a_1} + \Big(\overline{1a_na_{n-1}\cdots a_10} - \overline{a_na_{n-1}\cdots a_10}\Big)\\ = &\overline{1a_na_{n-1}\cdots a_1} + \overline{1000\cdots 0} \qquad \qquad \qquad (n+1个0)\\ = &\overline{11a_na_{n-1}\cdots a_1} = (4n+3)' \end{aligned} 3(2n+1)2n====1anan1a1+(1anan1a1+1anan1a1)anan1a101anan1a1+(1anan1a10anan1a10)1anan1a1+10000n+1011anan1a1=(4n+3)
所以只要 f ( 2 n + 1 ) = ( 2 n + 1 ) ′ f(2n+1)=(2n+1)' f(2n+1)=(2n+1) f ( n ) = n ′ f(n) = n' f(n)=n,那么就有 f ( 4 n + 3 ) = ( 4 n + 3 ) ′ f(4n+3)=(4n+3)' f(4n+3)=(4n+3)

  综上所述,经过数学归纳法归纳得到,对于任意一个 n ≥ 1 n \geq 1 n1 都有 f ( n ) = n ′ f(n) = n' f(n)=n
  证毕啦!


剩下的内容

  后面是这道题完整的题解。
  知道了这个函数是完成二进制翻转之后,我们可以得出 f ( n ) = n f(n) = n f(n)=n 当且仅当 n = n ′ n = n' n=n 即 n 的二进制串回文的。然后我们就可以用二进制的数位 DP 来解决这道题。具体的操作如下。
  我们设 g ( i ) g(i) g(i) 表示数字 i 的二进制的位数。现在我们就是要求出小于等于 m 的数中满足 f ( x ) = x f(x) = x f(x)=x 的数的个数。那么我们可以把这个任务拆成两个子任务:

  1. 对于所有的 g ( i ) < g ( m ) g(i) < g(m) g(i)<g(m) 的数 i 中满足 f ( i ) = i f(i) = i f(i)=i 的个数。
  2. 对于所有的 g ( i ) = g ( m ) 且 i ≤ m g(i) = g(m) 且 i \leq m g(i)=g(m)im 的数 i 中满足 f ( i ) = i f(i) = i f(i)=i 的个数。

  首先第一种,设数字 x 的位数为 g ( x ) = n    且    n < g ( m ) g(x) = n \; 且 \; n < g(m) g(x)=nn<g(m),则我们可以知道如果 i 是回文串的话,那么它的两段必定都是 1,像这样: i = 10 ⋯ 01 ‾ i = \overline{10\cdots01} i=1001,那么我们只需要考虑中间的位数。要想让这个串是回文的,我们可以先把前半部分任意添上 0 和 1,然后后半部分把前半部分倒着抄一遍就行了。那么我们找的回文串的数量也就是前半部分的所有可能出现的数。
  对于 n 为偶数的时候,前面就有 n 2 − 1 \frac{n}{2}-1 2n1 个数位能够随意地填写 0 或 1,所以回文串的个数为: 2 n 2 − 1 2^{\frac{n}{2}-1} 22n1。对于 n 为奇数的时候,同理得到回文串的个数为: 2 x − 1 2 2^{\frac{x-1}{2}} 22x1 个。归纳一下,就是二进制长度为 l l l 的数的回文数的个数也就是 2 ⌊ x − 1 2 ⌋ 2^{\lfloor\frac{x-1}{2}\rfloor} 22x1
  所以所有的 g ( i ) < g ( m ) g(i) < g(m) g(i)<g(m) 的数 i 中满足 f ( i ) = i f(i) = i f(i)=i 的个数为:
∑ i = 1 p ( m ) − 1 2 ⌊ i − 1 2 ⌋ \sum_{i=1}^{p(m)-1}2^{\lfloor \frac{i-1}{2} \rfloor} i=1p(m)122i1
  计算这个的时间复杂度是 o ( l o g m ⋅ l o g m ) o(logm\cdot logm) o(logmlogm) 的,能过 1 0 100 10^{100} 10100

  然第二种情况,对于所有的 g ( i ) = g ( m ) 且 i ≤ m g(i) = g(m) 且 i \leq m g(i)=g(m)im 的数 i 中满足 f ( i ) = i f(i) = i f(i)=i 的个数。与前面同理,首位和末位肯定都是 1,所以我们只考虑中间。这里有一个很讨厌的地方就是我们找的时候要考虑不能超过数字 m。所以我们这样操作:首先找到数字 m 的第一个非首位 1,然后记录它的位数(设为 第 k 位)。如果我们把这一位设为 0 那么后面的所有位数不管怎样排列都不会超过 m,所以我们从这一位开始一直到中间任意取 0 或 1,就有 2 ⌊ p ( m ) − 1 2 ⌋ − k 2^{\lfloor \frac{p(m)-1}{2} \rfloor - k} 22p(m)1k 中取法。然后再加上如果第 k 为取 1 的时候的可能就好了。如果第 k 为取 1,那么参考前面的做法,找到第三个一的位数然后分两种情况,一是这一位取 1,二是这一位取 0。然后再继续递归下去,直到所有位数都取 0 为止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值