人工智能算法有哪些?43.227.202.X

 

1.线性回归

线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线方程与该数据拟合来表示自变量(x 值)和数值结果(y 值)。然后就可以用这条线来预测未来的值!

这种算法最常用的技术是最小二乘法(Least of squares)。这个方法计算出最佳拟合线,以使得与直线上每个数据点的垂直距离最小。总距离是所有数据点的垂直距离(绿线)的平方和。其思想是通过最小化这个平方误差或距离来拟合模型。

2.逻辑回归

逻辑回归(Logistic regression)与线性回归类似,但逻辑回归的结果只能有两个的值。如果说线性回归是在预测一个开放的数值,那逻辑回归更像是做一道是或不是的判断题。逻辑回归经常被电商或者外卖平台用来预测用户对品类的购买偏好。

3.线性判别分析

线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。

4.决策树

决策树是一种通过对训练数据进行测算,实现对测试数据进行分类和预测的算法。

决策树通常由3个主要部分组成,分别为决策节点,分支,和叶节点。其中决策树最顶部的决策节点是根决策节点。每一个分支都有一个新的决策节点。决策节点下面是叶节点。每个决策节点表示一个待分类的数据类别或属性,每个叶节点表示一种结果。整个决策的过程从根决策节点开始,从上到下。根据数据的分类在每个决策节点给出不同的结果。

5.学习矢量量化

学习矢量量化(Learning Vector Quantization,LVQ),是一种用于模式分类的有监督的学习算法,也是一种结构简单、功能强大的有监督的神经网络分类算法。

6.支持向量机

支持向量机(Support Vector Machine)是一种用于分类问题的监督算法。采用最大分类间隔准则实现有限训练样本情况下推广能力的优化。通过核函数间接实现非线性分类或函数回归,支持向量机通常简写作SVM。

7.最近邻算法

K-最近邻算法(K-Nearest Neighbors,KNN)非常简单。KNN通过在整个训练集中搜索K个最相似的实例,即K个邻居,并为所有这些K个实例分配一个公共输出变量,来对对象进行分类。

8.随机森林算法

随机森林(Random Forest)是一种非常流行的集成机器学习算法。它是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。在集成学习中,主要分为bagging 算法和boosting 算法,而这里的随机森林则主要运用了bagging 算法。

9.人工神经网络

人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。

10.贝叶斯算法

朴素贝叶斯(Naive Bayes ,NB)算法是基于贝叶斯定理与特征条件独立假设的分类方法,该算法是有监督的学习算法,解决的是分类问题,是将一个未知样本分到几个预先已知类别的过程。

朴素贝叶斯的思想就是根据某些个先验概率计算Y变量属于某个类别的后验概率,也就是根据先前事件的有关数据估计未来某个事件发生的概率。

杭州IP段展示:

43.227.202.1

43.227.202.2

43.227.202.3

43.227.202.4

43.227.202.5

43.227.202.6

43.227.202.7

43.227.202.8

43.227.202.9

43.227.202.10

43.227.202.11

43.227.202.12

43.227.202.13

43.227.202.14

43.227.202.15

43.227.202.16

43.227.202.17

43.227.202.18

43.227.202.19

43.227.202.20

43.227.202.21

43.227.202.22

43.227.202.23

43.227.202.24

43.227.202.25

43.227.202.26

43.227.202.27

43.227.202.28

43.227.202.29

43.227.202.30

43.227.202.31

43.227.202.32

43.227.202.33

43.227.202.34

43.227.202.35

43.227.202.36

43.227.202.37

43.227.202.38

43.227.202.39

43.227.202.40

43.227.202.41

43.227.202.42

43.227.202.43

43.227.202.44

43.227.202.45

43.227.202.46

43.227.202.47

43.227.202.48

43.227.202.49

43.227.202.50

43.227.202.51

43.227.202.52

43.227.202.53

43.227.202.54

43.227.202.55

43.227.202.56

43.227.202.57

43.227.202.58

43.227.202.59

43.227.202.60

43.227.202.61

43.227.202.62

43.227.202.63

43.227.202.64

43.227.202.65

43.227.202.66

43.227.202.67

43.227.202.68

43.227.202.69

43.227.202.70

43.227.202.71

43.227.202.72

43.227.202.73

43.227.202.74

43.227.202.75

43.227.202.76

43.227.202.77

43.227.202.78

43.227.202.79

43.227.202.80

43.227.202.81

43.227.202.82

43.227.202.83

43.227.202.84

43.227.202.85

43.227.202.86

43.227.202.87

43.227.202.88

43.227.202.89

43.227.202.90

43.227.202.91

43.227.202.92

43.227.202.93

43.227.202.94

43.227.202.95

43.227.202.96

43.227.202.97

43.227.202.98

43.227.202.99

43.227.202.100

43.227.202.101

43.227.202.102

43.227.202.103

43.227.202.104

43.227.202.105

43.227.202.106

43.227.202.107

43.227.202.108

43.227.202.109

43.227.202.110

43.227.202.111

43.227.202.112

43.227.202.113

43.227.202.114

43.227.202.115

43.227.202.116

43.227.202.117

43.227.202.118

43.227.202.119

43.227.202.120

43.227.202.121

43.227.202.122

43.227.202.123

43.227.202.124

43.227.202.125

43.227.202.126

43.227.202.127

43.227.202.128

43.227.202.129

43.227.202.130

43.227.202.131

43.227.202.132

43.227.202.133

43.227.202.134

43.227.202.135

43.227.202.136

43.227.202.137

43.227.202.138

43.227.202.139

43.227.202.140

43.227.202.141

43.227.202.142

43.227.202.143

43.227.202.144

43.227.202.145

43.227.202.146

43.227.202.147

43.227.202.148

43.227.202.149

43.227.202.150

43.227.202.151

43.227.202.152

43.227.202.153

43.227.202.154

43.227.202.155

43.227.202.156

43.227.202.157

43.227.202.158

43.227.202.159

43.227.202.160

43.227.202.161

43.227.202.162

43.227.202.163

43.227.202.164

43.227.202.165

43.227.202.166

43.227.202.167

43.227.202.168

43.227.202.169

43.227.202.170

43.227.202.171

43.227.202.172

43.227.202.173

43.227.202.174

43.227.202.175

43.227.202.176

43.227.202.177

43.227.202.178

43.227.202.179

43.227.202.180

43.227.202.181

43.227.202.182

43.227.202.183

43.227.202.184

43.227.202.185

43.227.202.186

43.227.202.187

43.227.202.188

43.227.202.189

43.227.202.190

43.227.202.191

43.227.202.192

43.227.202.193

43.227.202.194

43.227.202.195

43.227.202.196

43.227.202.197

43.227.202.198

43.227.202.199

43.227.202.200

43.227.202.201

43.227.202.202

43.227.202.203

43.227.202.204

43.227.202.205

43.227.202.206

43.227.202.207

43.227.202.208

43.227.202.209

43.227.202.210

43.227.202.211

43.227.202.212

43.227.202.213

43.227.202.214

43.227.202.215

43.227.202.216

43.227.202.217

43.227.202.218

43.227.202.219

43.227.202.220

43.227.202.221

43.227.202.222

43.227.202.223

43.227.202.224

43.227.202.225

43.227.202.226

43.227.202.227

43.227.202.228

43.227.202.229

43.227.202.230

43.227.202.231

43.227.202.232

43.227.202.233

43.227.202.234

43.227.202.235

43.227.202.236

43.227.202.237

43.227.202.238

43.227.202.239

43.227.202.240

43.227.202.241

43.227.202.242

43.227.202.243

43.227.202.244

43.227.202.245

43.227.202.246

43.227.202.247

43.227.202.248

43.227.202.249

43.227.202.250

43.227.202.251

43.227.202.252

43.227.202.253

43.227.202.254

43.227.202.255

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IDC02芳芳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值