Java学习日记:UI篇(6)–谢尔宾斯基地毯图
引言:谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,谢尔宾斯基地毯和谢尔宾斯基三角形基本类似,不同之处在于谢尔宾斯基地毯采用的是正方形进行分形构造,而谢尔宾斯基三角形采用的等边三角形进行分形构造。谢尔宾斯基地毯和它本身的一部分完全相似,减掉一块会破坏自相似性。(来自百度百科)
是不是还不知道它是啥东西?没事,来张图看看:(有密集恐惧症者慎入)
思路:
方法1:
~~~~~~~
一个实心正方形划分为9个小正方形,为中间的小正方形涂上颜色(使得可见,所以你觉得什么颜色会让它最好看?),再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。
~~~~~~~
显而易见,这是一个迭代的过程,我们不断的重复之前的动作,多次以后,我们就可以得到谢尔宾斯基地毯图了。
看到这里你有想法了吗?
~~~~~~~
~~~~~~~
我们来试一下在正中心画一个正方形:
int x0=100,y0=50,width=300,height=300;
g.drawRect(x0, y0, width, height);//最外面的方框
g.fillRect(x0+width/3,y0+ height/3, width/3, height/3);//中心的正方形
~~~~~~~
~~~~~~~
x0、y0为方框左上角坐标,width、height分别为方框宽度和高度。根据思路里面说到的,将大的方框分为9个小正方形,所以中心正方形为方框的1/3。
~~~~~~~
现在我们已经做完了第一次操作了,接下来就是将它周围的八个正方形做同样的处理。我们可以一个个画,如下:
g.fillRect(x0+0*width/3+width/9,y0+0*height/3+height/9, width/9, height/9);//0,0
g.fillRect(x0+1*width/3+width/9,y0+0*height/3+height/9, width/9, height/9);//1,0
g.fillRect(x0+2*width/3+width/9,y0+0*height/3+height/9, width/9, height/9);//2,0
g.fillRect(x0+0*width/3+width/9,y0+1*height/3+height/9, width/9, height/9);//0,1
g.fillRect(x0+2*width/3+width/9,y0+1*height/3+height/9, width/9, height/9);//2,1
g.fillRect(x0+0*width/3+width/9,y0+2*height/3+height/9, width/9, height/9);//0,2
g.fillRect(x0+1*width/3+width/9,y0+2*height/3+height/9, width/9, height/9);//1,2
g.fillRect(x0+2*width/3+width/9,y0+2*height/3+height/9, width/9, height/9);//2,2
看到这里发现什么规律了吗?我们画正方形的方法为:g.fillRect(x, y, width, height);,所以仔细看上面的代码,是不是每一次的x、y都在变化,而且是有规律的变化,增加width/3,height/3。参考下图,可以让你更容易理解为什么是增加width/3,height/3。
所以我们可以采取如下的方法来代替这一串代码:
for(int k=0;k<=2;k++) { //改变纵坐标
for(int j=0;j<=2;j++) {//改变横坐标
g.fillRect(x0+j*width/3+width/9,y0+k*height/3+height/9, width/9, height/9);//绘画正方形
}
试试看交换两个for循环,是不是绘制顺序发生了改变?
~~~~~~~
~~~~~~~
接下来,我们进行层数嵌套:
int x0=100,y0=50,width=300,height=300;
g.drawRect(x0, y0, width, height);//最外面的方框
g.fillRect(x0+width/3,y0+ height/3, width/3, height/3);//中心的正方形
//开始切分
int n;//定义切分层数
for(int i=2;i<=n;i++){
int a=(int) Math.pow(3, i);//这里用调整正方形宽度比例(1/9,1/27...)
int b=(int) Math.pow(3, i-1);//间隔比例
for(int k=0;k<=Math.pow(3, i-1)-1;k++) { //改变纵坐标
for(int j=0;j<=Math.pow(3, i-1)-1;j++) {//改变横坐标
g.fillRect(x0+j*width/b+width/a,y0+k*height/b+height/a, width/a, height/a);//绘画
}
}
}
到此,我们便画出了如篇首的图像。为了让我们的过程更好,我们可以加入如下语句:
//加入判断语句,来跳过每一区域中心部分(已被上一级的正方形所覆盖,所以不需要再画了)
if(k==Math.pow(3,i-1)-2&&j==Math.pow(3,i-1)-2) {
continue;//跳过中间的不画
}
else{
g.fillRect(x0+j*width/b+width/a,y0+k*height/b+height/a, width/a, height/a);//绘画
//这里是让我们画图延迟一定时间,这样我们就可以清楚的看到画图的过程,1000 = 1s
try {
Thread.sleep(200);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
~~~~~~~
方法2
上面我们采用的是循环来绘制图形,接下面我们使用迭代来完成它。
思路:
构建一个绘制方法,然后用这个方法对自己进行调用,达到迭代的目的,绘出整个图形。
public void drawMySher1(Graphics g,int x,int y,int width,int height,int n) {
if(n<=0) {
return;//当n<=0,结束此次调用,运行后面的代码
}
g.fillRect(x+width/3, y+height/3, width/3, height/3);//绘制
n--;
drawMySher1(g,x,y,width/3,height/3,n);//0,0
drawMySher1(g,x+width/3,y,width/3,height/3,n);//1,0
drawMySher1(g,x+2*width/3,y,width/3,height/3,n);//2,0
/。。。
}
这里只是给出部分代码以作示例,重要的是思路。如果大家有什么想法的,欢迎一起讨论。
~~~~~~~
~~~~~~~
~~~~~~~
~~~~~~~
画图需要在界面上实现,如果有不清楚的可前往UI篇(1)。