RKNN-toolkit-1.7.1 环境配置(win 10)

1. 安装 Anaconda + 配置Python基础环境

1.1 去官网下载并安装Anaconda

Anaconda官网

1.2 新建并激活一个 python3.6 环境:

conda create --name=rknn python=3.6.8
conda activate rknn

进入虚拟环境后,再执行以下命令安装深度学习框架,如Tensorflow,Pytorch,Keras等。

2. 配置 python 环境

2.1 官方给出的依赖

  pip install tensorflow==1.14.0 
  pip install torch==1.5.1 
  pip install torchvision==0.4.0 
  pip install mxnet==1.5.0

2.2 安装 tensorflow==1.14.0 :

pip install tensorflow==1.14.0

2.3 安装 torch

官网的安装包库下载安装包,并安装:

pip install  "D:\SDK\external\rknn-toolkit\packages\torch-1.5.1+cpu-cp36-cp36m-win_amd64.whl"

2.4 安装 torchvision

官网的安装包库下载安装包,并安装:

pip install "D:\SDK\external\rknn-toolkit\packages\torchvision-0.4.0+cpu-cp36-cp36m-win_amd64.whl"

2.5 安装 mxnet==1.5.0:

pip install mxnet==1.5.0

2.6 安装opencv-python 及 报错的解决方法:

2.6.1 安装opencv:

pip install opencv-python

2.6.2 python3.6安装opencv遇到报错,如下所示:

  ********************************************************************************
  ----------------------------------------
  ERROR: Failed building wheel for opencv-python
Failed to build opencv-python
ERROR: Could not build wheels for opencv-python which use PEP 517 and cannot be installed directly

2.6.3 解决方法:

原因是使用pip install opencv-python命令安装的是最新版本,python3.6不支持。所以找一个python3.6支持的版本。如opencv-python==4.3.0.38

pip install -i https://pypi.douban.com/simple/ pip install opencv-python==4.3.0.38

2.7 安装 gluoncv :

pip install gluoncv

注:gluoncv 在运行 examples/mxnet 中的例子时会用到。

2.8 安装rknn-toolkit-1.7.1 及 报错:

2.8.1 安装rknn-toolkit-1.7.1

复制出rknn安装包"rknn_toolkit-1.7.1-cp36-cp36m-win_amd64.whl",位置在SDK/external/rknn-toolkit/packages/下,后进入你的packages/执行以下命令进行安装。

pip install rknn_toolkit-1.7.1-cp36-cp36m-win_amd64.whl

2.8.2 报错:

ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
mxnet 1.5.0 requires requests<2.19.0,>=2.18.4, but you have requests 2.22.0 which is incompatible.
matplotlib 3.3.4 requires pillow>=6.2.0, but you have pillow 5.3.0 which is incompatible.

由于 mxnet 所依赖的 requestsrknn-toolkit 所依赖的 requests冲突。

2.8.3 解决方法:

发现mxnet-1.0.0 既不会更换 numpy 也不会更换 requests,从而导致与 rknn-toolkit 依赖包冲突。rknn-toolkit-1.7.1 也没有依赖报错,更换代码如下:

  pip uninstall mxnet
  pip install mxnet==1.0.0

2.9 检测rknn是否安装成功,输入以下命令:

python
from rknn.api import RKNN

若无报错则安装RKNN成功,如下:

(rknn) D:\SDK\external\rknn-toolkit\packages> python
Python 3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> from rknn.api import RKNN
>>>

3. 参考文章

### RKNN-ToolkitRKNN-Zoo 的关系及功能对比 RKNN-Toolkit 是 Rockchip 提供的一套用于将神经网络模型转换为 RKNN 格式并部署到 Rockchip 芯片上的工具集[^1]。该工具包支持多种流行的深度学习框架,如 TensorFlow、PyTorch 等,并提供了丰富的 API 接口来简化模型优化、量化以及性能评估的过程。 另一方面,RKNN Model Zoo 则是一个预训练模型仓库,其中包含了多个已经过优化可以直接使用的 RKNN 模型实例[^3]。这些模型覆盖了图像分类、目标检测等多个领域应用案例,开发者可以快速下载所需模型进行测试或集成至实际产品中去。 #### 功能区别 | 特性 | RKNN-Toolkit | RKNN-Zoo | |-----|--------------------------------------------|------------------------------------------| | **主要作用** | 将其他格式的AI模型转成RKNN格式 | 预先准备好的经过优化后的RKNN模型集合 | | **适用场景** | 开发者自定义模型 | 使用官方提供的现成模型 | | **操作方式** | 编程接口 | 下载即用 | 对于希望将自己的 AI 模型移植到 Rockchip 平台上的开发人员来说,RKNN-Toolkit 显然是必不可少的选择;而对于那些寻找特定任务解决方案的人而言,则可以从 RKNN-Zoo 中挑选合适的预训练模型以节省时间和成本。 ```python from rknn.api import RKNN # 创建 RKNN 对象 rknn = RKNN() # 加载 ONNX/TensorFlow/Pytorch/Caffe/PaddlePaddle 模型 ret = rknn.load_onnx(model='your_model.onnx') if ret != 0: print('Load model failed!') exit(ret) # 构建 RKNN 模型 ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) # 导出 RKNN 文件 ret = rknn.export_rknn('./model.rknn') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值