题解:
暴力的想法是枚举a的上界,做b的最小生成树。
而且有一个比较显然的性质是:
如果可以在一个生成树中加入一条边,使得树的总权值更小,那么一定是(设这条边连接 x,y)x--y原路径上的最大权值<这条边的权值
删掉这条边,加上新边。
那么我们只需要用LCT,维护点与点之间的最大权值,将边以a排序,一条一条试图往里面加即可。
如果x,y不连通直接加入,否则按上述查询x,y的最大值,比较。
然后每次都更新一下答案。
需要注意的是,边权可以转化成点权,我们从x,y各向这个新点连边、删边即可。
暴力的想法是枚举a的上界,做b的最小生成树。
而且有一个比较显然的性质是:
如果可以在一个生成树中加入一条边,使得树的总权值更小,那么一定是(设这条边连接 x,y)x--y原路径上的最大权值<这条边的权值
删掉这条边,加上新边。
那么我们只需要用LCT,维护点与点之间的最大权值,将边以a排序,一条一条试图往里面加即可。
如果x,y不连通直接加入,否则按上述查询x,y的最大值,比较。
然后每次都更新一下答案。
需要注意的是,边权可以转化成点权,我们从x,y各向这个新点连边、删边即可。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int INF=0x3f3f3f3f;
#define maxn 160000
int getint()
{
char c;int res;
while(c=getchar(),c<'0'||c>'9');
res=c-'0';
while(c=getchar(),c>='0'&&c<='9')
res=res*10+c-'0';
return res;
}
struct node{int x,y,a,b;}e[maxn];
int n,m,ans,fa[maxn],tr[maxn][2],f[maxn],next[maxn],mx[maxn],v[maxn];
bool rev[maxn];
bool isroot(int x)
{
return (tr[fa[x]][0]!=x)&&(tr[fa[x]][1]!=x);
}
inline void pushup(int x)
{
mx[x]=x;
if(v[mx[tr[x][0]]]>v[mx[x]])
mx[x]=mx[tr[x][0]];
if(v[mx[tr[x][1]]]>v[mx[x]])
mx[x]=mx[tr[x][1]];
}
void rotate(int x)
{
int l,r,y,z;
y=fa[x];z=fa[y];
if(tr[y][0]==x) l=0;
else l=1;r=l^1;
if(!isroot(y))
{
if(tr[z][0]==y) tr[z][0]=x;
else tr[z][1]=x;
}
fa[x]=z;fa[y]=x;fa[tr[x][r]]=y;
tr[y][l]=tr[x][r];tr[x][r]=y;
pushup(y);pushup(x);
}
void pushdown(int x)
{
if(!isroot(x))
pushdown(fa[x]);
if(rev[x])
{
rev[x]^=1;rev[tr[x][1]]^=1;rev[tr[x][0]]^=1;
swap(tr[x][0],tr[x][1]);
}
}
void splay(int x)
{
pushdown(x);
int y,z;
while(!isroot(x))
{
y=fa[x];z=fa[y];
if(!isroot(y))
{
if((tr[y][0]==x)^(tr[z][0]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t=0;
while(x)
{
splay(x);
tr[x][1]=t;
pushup(x);
t=x;x=fa[x];
}
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=1;
}
void link(int x,int y)
{
makeroot(x);fa[x]=y;splay(x);
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
fa[x]=0;tr[y][0]=0;
}
int getf(int x)
{
return f[x]==x?x:f[x]=getf(f[x]);
}
inline int ask(int x,int y)
{
makeroot(x);access(y);splay(y);return mx[y];
}
bool cmp(node aa,node bb)
{
return aa.a<bb.a;
}
int main()
{
n=getint();m=getint();
for(int i=1;i<=n;i++) f[i]=i;
for(int i=1;i<=m;i++)
{
e[i].x=getint();e[i].y=getint();
e[i].a=getint();e[i].b=getint();
}
int r1,r2,x,y,tmp;ans=INF;
sort(e+1,e+1+m,cmp);
for(int i=1;i<=m;i++)
{
mx[i]=i+n;
v[i+n]=e[i].b;
}
for(int i=1;i<=m;i++)
{
x=e[i].x;y=e[i].y;
r1=getf(x);r2=getf(y);
if(r1!=r2)
{
f[r1]=r2;
link(x,n+i);link(y,n+i);
}
else
{
tmp=ask(x,y);
if(e[i].b<v[tmp])
{
cut(e[tmp-n].x,tmp);cut(e[tmp-n].y,tmp);
link(x,n+i);link(y,n+i);
}
}
if(getf(1)==getf(n))ans=min(ans,v[ask(1,n)]+e[i].a);
}
printf("%d\n",ans==INF?-1:ans);
return 0;
}