题意:给出平面上n个点,画出一个椭圆,椭圆的长轴是短轴的p倍,且长轴的方向为x轴逆时针旋转a度。求这个椭圆短轴的最小值使得可以覆盖所以点。
思路:先将所有点顺时针旋转a,然后所有点的x缩为原来的1/p。然后就是最小圆覆盖。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define pi acos(-1.0)
#define maxn 510000
#define eps 1e-8
struct node
{
double x,y;
}p[maxn],o;
double r;
int n;
double sqr(double x)
{
return x*x;
}
double dis(node a,node b)
{
return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
}
node getcen(node a,node b)
{
return (node){(a.x+b.x)/2,(a.y+b.y)/2};
}
node getcen(node a,node b,node c)
{
double k1,k2,b1,b2;
node p1,p2,p3;
p1=getcen(a,b);
k1=-1*(a.x-b.x)/(a.y-b.y);
b1=p1.y-k1*p1.x;
p2=getcen(b,c);
k2=-1*(c.x-b.x)/(c.y-b.y);
b2=p2.y-k2*p2.x;
if(b1==b2)
{
double maxs=0;
if(maxs<dis(a,b))
{
maxs=dis(a,b);p3=getcen(a,b);
}
if(maxs<dis(a,c))
{
maxs=dis(a,c);p3=getcen(a,c);
}
if(maxs<dis(c,b))
{
maxs=dis(c,b);p3=getcen(c,b);
}
}
else
{
p3.x=(b1-b2)/(k2-k1);p3.y=k1*p3.x+b1;
}
return p3;
}
double ang,tim;
void change(int i,double k)
{
double x=p[i].x*cos(k)+p[i].y*sin(k);
double y=-1*p[i].x*sin(k)+p[i].y*cos(k);
p[i].x=x;p[i].y=y;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
swap(p[i],p[rand()%i+1]);
}
scanf("%lf%lf",&ang,&tim);
ang=ang/180*pi;
for(int i=1;i<=n;i++)
{
change(i,ang);
p[i].x/=tim;
//printf("%lf %lf\n",p[i].x,p[i].y);
}
o=p[1];
for(int i=1;i<=n;i++)
{
if(dis(p[i],o)<=r+eps) continue;
o=getcen(p[1],p[i]);r=dis(o,p[i]);
for(int j=1;j<i;j++)
{
if(dis(p[j],o)<=r+eps) continue;
o=getcen(p[i],p[j]);r=dis(o,p[j]);
for(int k=1;k<j;k++)
{
if(dis(p[k],o)<=r+eps) continue;
o=getcen(p[i],p[j],p[k]);
r=dis(o,p[j]);
}
}
}
printf("%.3lf",r);
return 0;
}
/*
3
1 1
-1 -1
0 0
45
7
*/