求逆元【c++】

扩展欧几里得算法求逆元

适用于单个查找大数

void Exgcd(lint a,lint b,lint &x,lint &y){
    if(!b) x=1,y=0;
    else Exgcd(b,a%b,y,x),y-=a/b*x;
}
int inverse(lint a,lint p){//求a在mod p下的逆元
    lint x, y;
    Exgcd (a,p,x,y);
    x=(x%p+p)%p;
    return x; 
}

快速幂求逆元

利用费马小定理:

p为素数a为正整数,且a、p互质,则有 a^{p-1}≡(mod p)

所以此方法只适用于a、p互质的情况

//求a在mod p意义下的逆元,m为p-2,要求p为质数
lint inverse(lint a, lint m, lint p){
    a%=p;
    lint ans=1;
    for (;m;m>>=1,(a*=a)%=p)
    	if(m&1) (ans*=a)%=p;
    return ans;
}

递推求逆元

用于求一连串数字对于一个mod p的逆元

inv[1]=1;
for(int i=2;i<=n;++i)
    inv[i]=(p-p/i)*inv[p%i]%p;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ILECY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值