nkoj 2152
Description
给你一个长度为N(N<=10^6)的数组,一个长为K的滑动的窗体从最左移至最右端,你只能见到窗口的K个数,每次窗体向右移动一位,找出窗体所包含的数字的最大和最小值,如下表所示:k的值为3
窗口位置 最小值 最大值
[1 3 -1] -3 5 3 6 7 -1 3
1 [3 -1 -3] 5 3 6 7 -3 3
1 3 [-1 -3 5] 3 6 7 -3 5
1 3 -1 [-3 5 3] 6 7 -3 5
1 3 -1 -3 [5 3 6] 7 3 6
1 3 -1 -3 5 [3 6 7] 3 7
Input
第1行为n,k,第2行为长度为n的数组。
Output
共2行,第1行是每个位置的min value,第2行是每个位置的max value。
Sample Input
8 3
1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 33 3 5 5 6 7
分析:
对区域最大值而言:如果出现递增的情况,例如 1,5......那么1比5先出队,只要有5在,1就不是最大值,1,就可以删掉,形成一个单调递减的队列。
对最小值也同样成立,只不过形成的是单调递增序列
每一次取队首即可。
代码如下:
#include<cstdio> using namespace std; const int maxn=1000006; inline void _read(int &x){ char t=getchar();bool sign=true; while(t<'0'||t>'9') {if(t=='-')sign=false;t=getchar();} for(x=0;t>='0'&&t<='9';t=getchar())x=x*10+t-'0'; if(!sign)x=-x; } struct _int{ int num,pos; //pos记录当前元素的下标 }; _int qmax[maxn],qmin[maxn]; // qmax保持单调递减,qmin保持单调递增 int ans_min[maxn],ans_max[maxn]; int main(){ int n,k,i,x,cur=0; int maxhead=0,maxtail=0,mintail=0,minhead=0; _read(n);_read(k); for(i=1;i<=k;i++){ //前k个预先入队 ,并维护单调性 _read(x); while(maxhead!=maxtail&&qmax[maxtail-1].num<x)maxtail--; qmax[maxtail++]=(_int){x,i}; while(minhead!=mintail&&qmin[mintail-1].num>x)mintail--; qmin[mintail++]=(_int){x,i}; } for(i=k+1;i<=n;i++){ ans_max[++cur]=qmax[maxhead].num; //取出最大、最小作为答案 ans_min[cur]=qmin[minhead].num; _read(x); while(maxhead!=maxtail&&qmax[maxtail-1].num<x)maxtail--; //维护单调性 while(maxhead!=maxtail&&i-qmax[maxhead].pos>=k)maxhead++; //删除超出窗口的元素 qmax[maxtail++]=(_int){x,i}; //当前元素入队 //qmin的操作与qmax相同 while(minhead!=mintail&&qmin[mintail-1].num>x)mintail--; while(minhead!=mintail&&i-qmin[minhead].pos>=k)minhead++; qmin[mintail++]=(_int){x,i}; } ans_max[++cur]=qmax[maxhead].num; //最后再取一次; ans_min[cur]=qmin[minhead].num; for(i=1;i<=cur;i++)printf("%d ",ans_min[i]); printf("\n"); for(i=1;i<=cur;i++)printf("%d ",ans_max[i]); }