深度学习GPU环境安装(WINDOWS安装NVIDIA)

1.检测是否支持GPU环境

1.1.打开设备管理器

        winows下面搜索设备管理器(或者从桌面"此电脑"——>右键点击——>"管理"打开)

 1.2.查看本地显卡

        在"设备管理器"——"显示适配器"中,如果没有,则没有显卡,不支持安装。

1.3.本地显卡是否支持CUDN

        查看是否支持地址:https://www.nvidia.com/Download/index.aspx?lang=en-us

        例如我本地支持:

2.安装显卡驱动

2.1.下载显卡驱动

        官方驱动地址:https://www.nvidia.com/Download/index.aspx?lang=en-us

        搜索自己对应的版本然后下载:

 

 2.2.安装显卡驱动

        下载完成后双击安装,根据程序默认继续下一步即可。

 

2.3.重启电脑

         安装完成后,需要重启电脑。

3.选择CUDA和cuDNN版本

3.1.驱动支持版本

        CUDA的版本依赖于显卡的驱动程序版本,首先查看GPU驱动版本,win搜索NVIDIA控制面板。

         可以看到我的版本号是551.61。

        官方版本支持地址:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

        我的驱动版本是551.61,因此可以安装CUDA 12.3.x。但是由于机器学习tensorflow框架是有版本限制的,所以选择框架支持的版本11.2.0。(下一小节说明了框架的支持版本) 

3.2.根据机器学习框架tensorflow选择CUDA、cuDNN版本

        CUDA、cuDNN、TensorFlow 版本选择:

        官方支持版本地址:https://tensorflow.google.cn/install/source_windows#gpu

         最新支持CUDA11.2,向下兼容发现可以安装cuDNN8.1和tensorflow_gpu-2.6.0。

4.安装CUDA

4.1.下载CUDA

        下载地址:https://developer.nvidia.com/cuda-toolkit-archive
        由上一章节可知,我本地选择:CUDA11.2,cuDNN8.1(根据实际选择对应版本)

 

 4.2.安装CUDA

        下载到本地后双击安装:

         安装完成后检查环境变量中的变量:

        在cmd中输入如下命令检查:

nvcc -V

        有如下消息提示则安装成功:

5.安装cuDNN

5.1.下载cuDNN

        cuDNN下载(最新版本):https://developer.nvidia.com/zh-cn/cudnn
        cuDNN历史版本:https://developer.nvidia.cn/rdp/cudnn-archive
        由于我们选择的是cuDNN8.1版本:

 

5.1.安装cuDNN

         下载之后解压有以下内容:

         都复制到(除了NVIDIA_SLA_cuDNN_Support.txt文件)CUDA的安装目录(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2)下。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tachypsychia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值