本地大语言模型部署及应用

01  模型

2024-07-24,Meta 正式发布新一代开源大模型 Llama 3.1 系列,该模型共有三个版本:

  • 8B
  • 70B
  • 405B

meta评估了超过 150 个语言覆盖范围广的基准数据集。比较了 Llama 3.1 与竞争性模型在真实世界场景下的表现。实验评估表明,Llama 3.1 405B在一系列任务中与领先的基础模型相比具有竞争力,包括 GPT-4、GPT-4o 和 Claude 3.5 Sonnet。来源:Meta(https://ai.meta.com/blog/meta-llama-3-1/)

此外,8B本部和70B版本模型与参数数量相似且封闭或开放的模型相比也具有竞争力。

02  本地安装

1.本地电脑安装的硬件要求

Windows:3060以上显卡+8G以上显存+16G内存,硬盘空间至少20G(也可以在 CPU 上运行时基于内存 (RAM) 速度的模型 ,不过推理速度较慢)

Mac:M1或M2芯片 16G内存,20G以上硬盘空间

在开始之前,首先我们需要安装Ollama客户端,来进行本地部署Llama3.1大模型(Ollama 是一个便于本地部署和运行大型语言模型(Large Language Models, LLMs)的工具。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值