WebFlux-13异步调度算法

部署运行你感兴趣的模型镜像

WebFlux 异步调度算法详解

概述

WebFlux 的异步调度算法是其高性能并发处理能力的核心,负责管理事件循环、线程池调度、任务分配和异步执行。基于 Reactor 的调度器机制,WebFlux 实现了智能的任务调度策略,确保系统在不同负载下都能保持高效运行。本文深入剖析 WebFlux 异步调度算法的设计原理、实现机制和优化策略。

调度算法架构

1. 整体调度架构

优化层
任务层
执行层
调度器层
任务分配
负载均衡
线程亲和性
性能监控
异步执行
Runnable任务
回调通知
结果处理
任务队列
Worker
线程池
执行引擎
ImmediateScheduler
Schedulers
SingleScheduler
ParallelScheduler
BoundedElasticScheduler

2. 调度流程时序

PublisherSchedulerWorkerThreadPoolTaskcreateWorker()初始化Worker获取执行线程schedule(task)包装任务提交执行执行任务回调结果任务完成清理资源PublisherSchedulerWorkerThreadPoolTask

调度器类型和实现

1. 调度器类型对比

调度器类型
Immediate
Single
Parallel
BoundedElastic
当前线程
单线程
固定线程池
弹性线程池
无切换开销
顺序执行
CPU密集型
阻塞操作

2. ImmediateScheduler 实现

// 立即执行调度器 - 在当前线程执行任务
final class ImmediateScheduler implements Scheduler {
    
    static final ImmediateScheduler INSTANCE = new ImmediateScheduler();
    
    @Override
    public Worker createWorker() {
        return new ImmediateWorker();
    }
    
    static final class ImmediateWorker implements Worker {
        
        @Override
        public Disposable schedule(Runnable task) {
            // 直接在当前线程执行任务
            task.run();
            return Disposables.disposed();
        }
        
        @Override
        public Disposable schedule(Runnable task, long delay, TimeUnit unit) {
            if (delay <= 0) {
                // 无延迟,立即执行
                task.run();
            } else {
                // 有延迟,使用当前线程睡眠
                try {
                    unit.sleep(delay);
                    task.run();
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                    throw Exceptions.propagate(e);
                }
            }
            return Disposables.disposed();
        }
    }
}

3. ParallelScheduler 实现

// 并行调度器 - 基于固定大小的线程池
final class ParallelScheduler implements Scheduler {
    
    private final int n;
    private final ThreadFactory factory;
    private final AtomicReferenceArray<EventLoopGroup> eventLoopGroups;
    
    ParallelScheduler(int n, ThreadFactory factory) {
        this.n = n;
        this.factory = factory;
        this.eventLoopGroups = new AtomicReferenceArray<>(n);
    }
    
    @Override
    public Worker createWorker() {
        return new ParallelWorker(pick());
    }
    
    // 轮询选择 EventLoop
    EventLoopGroup pick() {
        int index = (int) (Thread.currentThread().getId() % n);
        EventLoopGroup group = eventLoopGroups.get(index);
        if (group == null) {
            group = new EventLoopGroup(1, factory);
            if (!eventLoopGroups.compareAndSet(index, null, group)) {
                group.shutdownGracefully();
                group = eventLoopGroups.get(index);
            }
        }
        return group;
    }
    
    static final class ParallelWorker implements Worker {
        
        private final EventLoopGroup eventLoopGroup;
        
        ParallelWorker(EventLoopGroup eventLoopGroup) {
            this.eventLoopGroup = eventLoopGroup;
        }
        
        @Override
        public Disposable schedule(Runnable task) {
            // 提交到 EventLoop 执行
            return new EventLoopDisposable(eventLoopGroup.submit(task));
        }
        
        @Override
        public Disposable schedule(Runnable task, long delay, TimeUnit unit) {
            // 延迟执行
            return new EventLoopDisposable(
                eventLoopGroup.schedule(task, delay, unit)
            );
        }
    }
}

4. BoundedElasticScheduler 实现

// 有界弹性调度器 - 适合阻塞操作
final class BoundedElasticScheduler implements Scheduler {
    
    private final int maxThreads;
    private final int maxTaskQueueSize;
    private final ThreadFactory factory;
    private final ScheduledExecutorService[] executors;
    private final AtomicInteger roundRobin = new AtomicInteger();
    
    BoundedElasticScheduler(int maxThreads, int maxTaskQueueSize, ThreadFactory factory) {
        this.maxThreads = maxThreads;
        this.maxTaskQueueSize = maxTaskQueueSize;
        this.factory = factory;
        this.executors = new ScheduledExecutorService[maxThreads];
        
        // 创建固定数量的线程池
        for (int i = 0; i < maxThreads; i++) {
            executors[i] = new ScheduledThreadPoolExecutor(1, factory,
                new LinkedBlockingQueue<>(maxTaskQueueSize),
                new ThreadPoolExecutor.AbortPolicy());
        }
    }
    
    @Override
    public Worker createWorker() {
        int index = roundRobin.getAndIncrement() % maxThreads;
        return new BoundedElasticWorker(executors[index]);
    }
    
    static final class BoundedElasticWorker implements Worker {
        
        private final ScheduledExecutorService executor;
        
        BoundedElasticWorker(ScheduledExecutorService executor) {
            this.executor = executor;
        }
        
        @Override
        public Disposable schedule(Runnable task) {
            try {
                // 提交任务到线程池
                Future<?> future = executor.submit(task);
                return new FutureDisposable(future);
            } catch (RejectedExecutionException e) {
                // 任务队列满,执行拒绝策略
                throw Exceptions.failWithOverflow("BoundedElastic scheduler queue is full", e);
            }
        }
    }
}

任务调度算法

1. 轮询调度算法

// 轮询调度实现
public class RoundRobinScheduler {
    
    private final AtomicInteger counter = new AtomicInteger(0);
    private final List<Worker> workers;
    
    public RoundRobinScheduler(List<Worker> workers) {
        this.workers = workers;
    }
    
    public Worker selectWorker() {
        int index = counter.getAndIncrement() % workers.size();
        return workers.get(index);
    }
}

// 在 ParallelScheduler 中的应用
@Override
public Worker createWorker() {
    // 轮询选择 EventLoop
    int index = roundRobin.getAndIncrement() % n;
    return new ParallelWorker(eventLoopGroups[index]);
}

2. 工作窃取算法

// 工作窃取调度器
public class WorkStealingScheduler {
    
    private final Deque<Runnable>[] workQueues;
    private final WorkerThread[] threads;
    private final Random random = new Random();
    
    public WorkStealingScheduler(int parallelism) {
        this.workQueues = new Deque[parallelism];
        this.threads = new WorkerThread[parallelism];
        
        for (int i = 0; i < parallelism; i++) {
            workQueues[i] = new ConcurrentLinkedDeque<>();
            threads[i] = new WorkerThread(i, this);
            threads[i].start();
        }
    }
    
    public void submit(Runnable task) {
        int threadId = Thread.currentThread().hashCode() % threads.length;
        workQueues[threadId].push(task);
    }
    
    // 工作线程实现
    class WorkerThread extends Thread {
        
        private final int id;
        private final WorkStealingScheduler scheduler;
        
        WorkerThread(int id, WorkStealingScheduler scheduler) {
            this.id = id;
            this.scheduler = scheduler;
        }
        
        @Override
        public void run() {
            while (!isInterrupted()) {
                Runnable task = stealWork();
                if (task != null) {
                    task.run();
                } else {
                    // 没有工作,短暂睡眠
                    LockSupport.parkNanos(1000);
                }
            }
        }
        
        private Runnable stealWork() {
            // 1. 先尝试从自己的队列获取任务
            Runnable task = workQueues[id].poll();
            if (task != null) {
                return task;
            }
            
            // 2. 尝试从其他线程窃取工作
            for (int i = 0; i < threads.length; i++) {
                if (i != id) {
                    Runnable stolenTask = workQueues[i].pollLast();
                    if (stolenTask != null) {
                        return stolenTask;
                    }
                }
            }
            
            return null;
        }
    }
}

3. 优先级调度算法

// 优先级任务
class PriorityTask implements Comparable<PriorityTask> {
    private final Runnable task;
    private final int priority;
    
    PriorityTask(Runnable task, int priority) {
        this.task = task;
        this.priority = priority;
    }
    
    @Override
    public int compareTo(PriorityTask other) {
        return Integer.compare(other.priority, this.priority); // 高优先级在前
    }
    
    Runnable getTask() {
        return task;
    }
}

// 优先级调度器
public class PriorityScheduler implements Scheduler {
    
    private final PriorityBlockingQueue<PriorityTask> taskQueue;
    private final ExecutorService executor;
    
    public PriorityScheduler(int parallelism) {
        this.taskQueue = new PriorityBlockingQueue<>();
        this.executor = Executors.newFixedThreadPool(parallelism);
        
        // 启动工作线程
        for (int i = 0; i < parallelism; i++) {
            executor.submit(this::processTasks);
        }
    }
    
    private void processTasks() {
        while (!Thread.currentThread().isInterrupted()) {
            try {
                PriorityTask priorityTask = taskQueue.take();
                priorityTask.getTask().run();
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                break;
            }
        }
    }
    
    @Override
    public Worker createWorker() {
        return new PriorityWorker();
    }
    
    class PriorityWorker implements Worker {
        @Override
        public Disposable schedule(Runnable task) {
            return schedule(task, 0); // 默认优先级
        }
        
        @Override
        public Disposable schedule(Runnable task, long delay, TimeUnit unit) {
            if (delay <= 0) {
                taskQueue.offer(new PriorityTask(task, 0));
            } else {
                // 延迟执行
                ScheduledExecutorService timer = Executors.newSingleThreadScheduledExecutor();
                timer.schedule(() -> taskQueue.offer(new PriorityTask(task, 0)), delay, unit);
                timer.shutdown();
            }
            return Disposables.disposed();
        }
        
        public Disposable schedule(Runnable task, int priority) {
            taskQueue.offer(new PriorityTask(task, priority));
            return Disposables.disposed();
        }
    }
}

异步执行机制

1. 任务包装和执行

// 可调度的任务包装
class ScheduledRunnable implements Runnable {
    
    private final Runnable task;
    private final CompletableFuture<Void> future;
    
    ScheduledRunnable(Runnable task, CompletableFuture<Void> future) {
        this.task = task;
        this.future = future;
    }
    
    @Override
    public void run() {
        try {
            task.run();
            future.complete(null);
        } catch (Throwable t) {
            future.completeExceptionally(t);
        }
    }
}

// 异步执行包装器
public class AsyncExecutionWrapper {
    
    public static <T> Mono<T> wrapAsync(Callable<T> callable, Scheduler scheduler) {
        return Mono.fromCallable(callable)
            .subscribeOn(scheduler)
            .timeout(Duration.ofSeconds(30))
            .onErrorMap(TimeoutException.class,
                ex -> new AsyncExecutionTimeoutException("Async execution timeout", ex));
    }
    
    public static <T> Flux<T> wrapAsyncStream(Iterable<T> data, Function<T, T> processor, Scheduler scheduler) {
        return Flux.fromIterable(data)
            .parallel()
            .runOn(scheduler)
            .map(processor)
            .sequential()
            .onErrorResume(error -> {
                log.error("Error in async stream processing", error);
                return Flux.empty();
            });
    }
}

2. 回调和通知机制

// 异步回调管理器
public class AsyncCallbackManager {
    
    private final List<Consumer<AsyncResult>> callbacks = new CopyOnWriteArrayList<>();
    
    public void addCallback(Consumer<AsyncResult> callback) {
        callbacks.add(callback);
    }
    
    public void notifyCallbacks(AsyncResult result) {
        for (Consumer<AsyncResult> callback : callbacks) {
            try {
                callback.accept(result);
            } catch (Exception e) {
                log.error("Error executing callback", e);
            }
        }
    }
    
    @Data
    @AllArgsConstructor
    public static class AsyncResult {
        private final boolean success;
        private final Object result;
        private final Throwable error;
        private final long executionTime;
    }
}

性能优化算法

1. 自适应线程池算法

// 自适应线程池 - 根据负载动态调整线程数
public class AdaptiveThreadPool {
    
    private final int minThreads;
    private final int maxThreads;
    private final AtomicInteger currentThreads;
    private final ThreadPoolExecutor executor;
    private final ScheduledExecutorService monitor;
    
    public AdaptiveThreadPool(int minThreads, int maxThreads) {
        this.minThreads = minThreads;
        this.maxThreads = maxThreads;
        this.currentThreads = new AtomicInteger(minThreads);
        
        this.executor = new ThreadPoolExecutor(
            minThreads, minThreads,
            60L, TimeUnit.SECONDS,
            new LinkedBlockingQueue<>(),
            new ThreadFactory() {
                private final AtomicInteger counter = new AtomicInteger();
                @Override
                public Thread newThread(Runnable r) {
                    Thread t = new Thread(r);
                    t.setName("adaptive-pool-" + counter.incrementAndGet());
                    return t;
                }
            }
        );
        
        // 启动监控线程
        this.monitor = Executors.newSingleThreadScheduledExecutor();
        this.monitor.scheduleAtFixedRate(this::adjustThreadPool, 30, 30, TimeUnit.SECONDS);
    }
    
    private void adjustThreadPool() {
        int activeCount = executor.getActiveCount();
        int poolSize = executor.getPoolSize();
        int queueSize = executor.getQueue().size();
        
        // 负载计算
        double loadFactor = (double) activeCount / poolSize;
        
        if (loadFactor > 0.8 && queueSize > poolSize * 2) {
            // 高负载,增加线程
            int newSize = Math.min(currentThreads.get() * 2, maxThreads);
            if (newSize > currentThreads.get()) {
                executor.setCorePoolSize(newSize);
                executor.setMaximumPoolSize(newSize);
                currentThreads.set(newSize);
                log.info("Increased thread pool size to {}", newSize);
            }
        } else if (loadFactor < 0.3 && queueSize < poolSize / 2) {
            // 低负载,减少线程
            int newSize = Math.max(currentThreads.get() / 2, minThreads);
            if (newSize < currentThreads.get()) {
                executor.setCorePoolSize(newSize);
                executor.setMaximumPoolSize(newSize);
                currentThreads.set(newSize);
                log.info("Decreased thread pool size to {}", newSize);
            }
        }
    }
}

2. 任务批处理算法

// 智能批处理调度器
public class SmartBatchingScheduler {
    
    private final int batchSize;
    private final Duration batchTimeout;
    private final Scheduler delegateScheduler;
    private final ConcurrentHashMap<String, Batch> batches;
    
    public SmartBatchingScheduler(int batchSize, Duration batchTimeout, Scheduler delegateScheduler) {
        this.batchSize = batchSize;
        this.batchTimeout = batchTimeout;
        this.delegateScheduler = delegateScheduler;
        this.batches = new ConcurrentHashMap<>();
    }
    
    public <T, R> Mono<R> scheduleBatched(String batchKey, T input, Function<List<T>, R> batchProcessor) {
        return Mono.defer(() -> {
            Batch<T, R> batch = batches.computeIfAbsent(batchKey, k -> new Batch<>(batchProcessor));
            
            return batch.add(input)
                .doFinally(signal -> {
                    if (batch.isComplete()) {
                        batches.remove(batchKey);
                    }
                });
        });
    }
    
    private class Batch<T, R> {
        private final List<T> items = new ArrayList<>();
        private final Function<List<T>, R> processor;
        private final List<MonoSink<R>> sinks = new ArrayList<>();
        private final AtomicInteger count = new AtomicInteger(0);
        
        Batch(Function<List<T>, R> processor) {
            this.processor = processor;
            startTimeout();
        }
        
        private void startTimeout() {
            delegateScheduler.schedule(() -> {
                if (!items.isEmpty()) {
                    processBatch();
                }
            }, batchTimeout.toMillis(), TimeUnit.MILLISECONDS);
        }
        
        Mono<R> add(T item) {
            return Mono.create(sink -> {
                synchronized (items) {
                    items.add(item);
                    sinks.add(sink);
                    
                    if (items.size() >= batchSize) {
                        processBatch();
                    }
                }
            });
        }
        
        private void processBatch() {
            synchronized (items) {
                if (items.isEmpty()) return;
                
                List<T> batchItems = new ArrayList<>(items);
                List<MonoSink<R>> batchSinks = new ArrayList<>(sinks);
                
                items.clear();
                sinks.clear();
                
                delegateScheduler.schedule(() -> {
                    try {
                        R result = processor.apply(batchItems);
                        batchSinks.forEach(sink -> sink.success(result));
                    } catch (Exception e) {
                        batchSinks.forEach(sink -> sink.error(e));
                    }
                });
            }
        }
        
        boolean isComplete() {
            return count.get() == 0 && items.isEmpty();
        }
    }
}

负载均衡算法

1. 加权轮询算法

// 加权轮询调度器
public class WeightedRoundRobinScheduler {
    
    private final List<WeightedWorker> workers;
    private final AtomicInteger currentWeight = new AtomicInteger(0);
    private final AtomicInteger currentIndex = new AtomicInteger(0);
    private final int maxWeight;
    
    public WeightedRoundRobinScheduler(List<WeightedWorker> workers) {
        this.workers = workers;
        this.maxWeight = workers.stream()
            .mapToInt(WeightedWorker::getWeight)
            .max()
            .orElse(1);
    }
    
    public Worker selectWorker() {
        while (true) {
            int currentIdx = currentIndex.get();
            int currentWgt = currentWeight.get();
            
            if (currentIdx >= workers.size()) {
                currentIdx = 0;
                currentWgt = currentWgt - gcd(maxWeight);
                if (currentWgt <= 0) {
                    currentWgt = maxWeight;
                }
                currentWeight.set(currentWgt);
            }
            currentIndex.set(currentIdx + 1);
            
            WeightedWorker worker = workers.get(currentIdx);
            if (worker.getWeight() >= currentWgt) {
                return worker.getWorker();
            }
        }
    }
    
    private int gcd(int a) {
        int b = workers.stream()
            .mapToInt(WeightedWorker::getWeight)
            .reduce(this::gcd)
            .orElse(1);
        return gcd(a, b);
    }
    
    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
    
    @Data
    @AllArgsConstructor
    public static class WeightedWorker {
        private final Worker worker;
        private final int weight;
    }
}

2. 最少连接算法

// 最少连接调度器
public class LeastConnectionsScheduler {
    
    private final List<ConnectionTrackingWorker> workers;
    private final AtomicInteger[] connectionCounts;
    
    public LeastConnectionsScheduler(List<Worker> delegateWorkers) {
        this.workers = delegateWorkers.stream()
            .map(ConnectionTrackingWorker::new)
            .collect(Collectors.toList());
        this.connectionCounts = new AtomicInteger[workers.size()];
        
        for (int i = 0; i < workers.size(); i++) {
            connectionCounts[i] = new AtomicInteger(0);
        }
    }
    
    public Worker selectWorker() {
        int minConnections = Integer.MAX_VALUE;
        int selectedIndex = 0;
        
        for (int i = 0; i < connectionCounts.length; i++) {
            int connections = connectionCounts[i].get();
            if (connections < minConnections) {
                minConnections = connections;
                selectedIndex = i;
            }
        }
        
        return workers.get(selectedIndex);
    }
    
    private class ConnectionTrackingWorker implements Worker {
        
        private final Worker delegate;
        private final int index;
        
        ConnectionTrackingWorker(Worker delegate) {
            this.delegate = delegate;
            this.index = workers.indexOf(this);
        }
        
        @Override
        public Disposable schedule(Runnable task) {
            connectionCounts[index].incrementAndGet();
            
            Runnable trackingTask = () -> {
                try {
                    task.run();
                } finally {
                    connectionCounts[index].decrementAndGet();
                }
            };
            
            return delegate.schedule(trackingTask);
        }
        
        @Override
        public Disposable schedule(Runnable task, long delay, TimeUnit unit) {
            return delegate.schedule(task, delay, unit);
        }
    }
}

监控和诊断

1. 调度性能监控

@Component
public class SchedulerPerformanceMonitor {
    
    private final MeterRegistry meterRegistry;
    
    public SchedulerPerformanceMonitor(MeterRegistry meterRegistry) {
        this.meterRegistry = meterRegistry;
    }
    
    public <T> Scheduler monitorScheduler(Scheduler scheduler, String schedulerName) {
        return new MonitoringScheduler(scheduler, schedulerName);
    }
    
    private class MonitoringScheduler implements Scheduler {
        
        private final Scheduler delegate;
        private final String name;
        
        MonitoringScheduler(Scheduler delegate, String name) {
            this.delegate = delegate;
            this.name = name;
        }
        
        @Override
        public Worker createWorker() {
            return new MonitoringWorker(delegate.createWorker(), name);
        }
    }
    
    private class MonitoringWorker implements Worker {
        
        private final Worker delegate;
        private final String schedulerName;
        
        MonitoringWorker(Worker delegate, String schedulerName) {
            this.delegate = delegate;
            this.schedulerName = schedulerName;
        }
        
        @Override
        public Disposable schedule(Runnable task) {
            long startTime = System.nanoTime();
            
            Runnable monitoredTask = () -> {
                try {
                    task.run();
                } finally {
                    long duration = System.nanoTime() - startTime;
                    Metrics.timer("scheduler.task.duration", 
                        "scheduler", schedulerName).record(duration, TimeUnit.NANOSECONDS);
                }
            };
            
            return delegate.schedule(monitoredTask);
        }
        
        @Override
        public Disposable schedule(Runnable task, long delay, TimeUnit unit) {
            Metrics.counter("scheduler.delayed.tasks", 
                "scheduler", schedulerName).increment();
            return delegate.schedule(task, delay, unit);
        }
    }
}

2. 调度诊断工具

@Component
public class SchedulerDiagnostics {
    
    private static final Logger logger = LoggerFactory.getLogger(SchedulerDiagnostics.class);
    
    public void diagnoseSchedulerIssues(Scheduler scheduler, String name) {
        if (scheduler instanceof ParallelScheduler) {
            diagnoseParallelScheduler((ParallelScheduler) scheduler, name);
        } else if (scheduler instanceof BoundedElasticScheduler) {
            diagnoseBoundedElasticScheduler((BoundedElasticScheduler) scheduler, name);
        }
    }
    
    private void diagnoseParallelScheduler(ParallelScheduler scheduler, String name) {
        // 监控线程使用情况
        ScheduledExecutorService monitor = Executors.newSingleThreadScheduledExecutor();
        monitor.scheduleAtFixedRate(() -> {
            try {
                // 通过反射获取内部状态
                Field workersField = ParallelScheduler.class.getDeclaredField("eventLoopGroups");
                workersField.setAccessible(true);
                AtomicReferenceArray<?> workers = (AtomicReferenceArray<?>) workersField.get(scheduler);
                
                int activeWorkers = 0;
                for (int i = 0; i < workers.length(); i++) {
                    if (workers.get(i) != null) {
                        activeWorkers++;
                    }
                }
                
                logger.debug("Parallel scheduler {} - Active workers: {}/{}", 
                    name, activeWorkers, workers.length());
                
            } catch (Exception e) {
                logger.error("Error diagnosing parallel scheduler", e);
            }
        }, 0, 30, TimeUnit.SECONDS);
    }
    
    public void detectSchedulingBottlenecks(Flux<?> stream, String operation, Duration threshold) {
        AtomicLong startTime = new AtomicLong();
        AtomicLong itemCount = new AtomicLong();
        
        stream
            .doOnSubscribe(subscription -> {
                startTime.set(System.nanoTime());
            })
            .doOnNext(item -> {
                long duration = System.nanoTime() - startTime.get();
                itemCount.incrementAndGet();
                
                if (duration > threshold.toNanos()) {
                    logger.warn("Scheduling bottleneck detected in {}: {} ms for {} items", 
                        operation, 
                        TimeUnit.NANOSECONDS.toMillis(duration), 
                        itemCount.get());
                }
            })
            .doFinally(signal -> {
                long totalDuration = System.nanoTime() - startTime.get();
                logger.info("Operation {} completed in {} ms, processed {} items", 
                    operation, 
                    TimeUnit.NANOSECONDS.toMillis(totalDuration), 
                    itemCount.get());
            });
    }
}

最佳实践总结

1. 调度器选择指南

# WebFlux 调度器选择最佳实践
scheduler_selection:
  # CPU密集型任务
  cpu_intensive:
    use_parallel_scheduler: true       # 使用并行调度器
    thread_count: "CPU核心数"         # 线程数等于CPU核心数
    avoid_blocking: true               # 避免阻塞操作
    
  # I/O密集型任务
  io_intensive:
    use_bounded_elastic: true          # 使用有界弹性调度器
    max_threads: 200                   # 最大线程数
    queue_size: 100000                 # 队列大小
    
  # 轻量级任务
  lightweight:
    use_immediate_scheduler: true      # 使用立即调度器
    avoid_context_switching: true      # 避免上下文切换
    
  # 顺序执行任务
  sequential:
    use_single_scheduler: true         # 使用单线程调度器
    ensure_ordering: true              # 确保顺序执行

2. 性能优化清单

  1. 合理选择调度器:根据任务类型选择合适的调度器
  2. 避免过度调度:减少不必要的线程切换
  3. 优化线程池大小:根据系统负载调整线程池大小
  4. 使用批处理:对大量小任务使用批处理优化
  5. 监控调度性能:实时监控调度性能指标
  6. 实现背压控制:防止任务队列溢出

通过深入理解 WebFlux 的异步调度算法,开发者可以构建出高性能、高并发的响应式应用,充分利用现代多核处理器和异步编程的优势。

您可能感兴趣的与本文相关的镜像

FLUX.1-dev

FLUX.1-dev

图片生成
FLUX

FLUX.1-dev 是一个由 Black Forest Labs 创立的开源 AI 图像生成模型版本,它以其高质量和类似照片的真实感而闻名,并且比其他模型更有效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值