算法设计与分析: 2-10 集合划分问题(Bell数)

本文介绍了集合划分问题,特别是与Bell数的关联。通过数学知识阐述了Bell数的定义和第二类Stirling数的关系,并分析了递归解决Bell数问题的方法。此外,还提供了两个Java实现版本,用于计算给定元素数量的集合划分数量。
摘要由CSDN通过智能技术生成

2-10 集合划分问题(Bell数)


问题描述

n个元素的集合{1,2,…,n}可以划分若干个非空子集。例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集如下:
{ {1},{2},{3},{4}},
{ {1,2},{3},{4}},
{ {1,3},{2},{4}},
{ {1,4},{2},{3}},
{ {2,3},{1},{4}},
{ {2,4},{1},{3}},
{ {3,4},{1},{2}},
{ {1,2},{3,4}},
{ {1,3},{2,4}},
{ {1,4},{2,3}},
{ {1,2,3},{4}},
{ {1,2,4},{3}},
{ {1,3,4},{2}},
{ {2,3,4},{1}},
{ {1,2,3,4}}
给定正整数n(1<=n<=20),计算出n个元素的集合{1,2,…,n} 可以化为多少个不同的非空子集。


数学知识

Bell数的定义:第n个Bell数表示集合{1,2,3,…,n}的划分方案数,B(0)=1;
B(n)=n1i=0(n1i)B(i) B ( n ) = ∑

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值