算法设计与分析: 5-12 罗密欧与朱丽叶的迷宫问题

本文介绍了罗密欧与朱丽叶如何在一个m×n的迷宫中找到最短转弯路径的问题。迷宫包含封闭房间,罗密欧必须遍历所有未封闭房间一次并到达朱丽叶的位置。通过回溯法解决此问题,输入包括迷宫尺寸、封闭房间数量及起始与目标位置。给出的数据输入格式为:迷宫大小、封闭房间数、封闭房间坐标及罗密欧与朱丽叶的位置。
摘要由CSDN通过智能技术生成

5-12 罗密欧与朱丽叶的迷宫问题


问题描述

罗密欧与朱丽叶的迷宫。罗密欧与朱丽叶身处一个 m×n 的迷宫中,如图所示。每一个方格表示迷宫中的一个房间。这 m×n 个房间中有一些房间是封闭的,不允许任何人进入。 在迷宫中任何位置均可沿 8 个方向进入未封闭的房间。罗密欧位于迷宫的(p,q)方格中,他 必须找出一条通向朱丽叶所在的(r,s)方格的路。在抵达朱丽叶之前,他必须走遍所有未封 闭的房间各一次,而且要使到达朱丽叶的转弯次数为最少。每改变一次前进方向算作转弯一 次。请设计一个算法帮助罗密欧找出这样一条道路。

罗密欧与朱丽叶的迷宫

对于给定的罗密欧与朱丽叶的迷宫,编程计算罗密欧通向朱丽叶的所有最少转弯道路。

数据输入:
第一行有 3 个正整数 n,m,k,分别表示迷宫的行数,列数和封闭的房间数。接下来的 k 行中,每行 2 个正整数,表示被封闭的房间所在的行号和 列号。最后的 2 行,每行也有 2 个正整数,分别表示罗密欧所处的方格(p,q)和朱丽叶所处 的方格(r,s)。


Java

package Chapter5HuiSuFa;

import java.util.Scanner;

public class RomeoYuJulietDeMiGong {
   

    private static int[] dx = {
  0,-1,-1,0,1,1,1,0,-1};
    private stat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值