算法设计与分析: 6-4 无向图的最大割问题

这篇博客介绍了如何利用优先队列式分支限界法解决无向图的最大割问题。内容包括问题描述、Java实现、输入输出格式,并引用了王晓东《计算机算法设计与分析》的相关内容。
摘要由CSDN通过智能技术生成

6-4 无向图的最大割问题


问题描述

给定一个无向图 G=(V,E),设 UV U ⊆ V 是 G 的顶点集。对任意(u,v)∈E,若有 u∈U 且v∈V-U,就称(u,v)为关于顶点集 U 的一条割边。顶点集 U 的所有割边构成图 G 的一个割。 G 的最大割是指 G 中所含边数最多的割。

对于给定的无向图 G,设计一个优先队列式分支限界法,计算 G 的最大割。

数据输入:
第 1 行有 2 个正整数 n 和 m,表示给定的图 G 有 n 个顶点和 m 条边,顶点编号为 1,2,…,n。接下来的 m 行中,每行有 2 个正整数 u,v,表示 图 G 的一条边(u,v)。


Java

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值