1、题目描述
124. 二叉树中的最大路径和 - 力扣(LeetCode)
给定一个非空二叉树,返回其最大路径和。
本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
2、代码详解
# 定义二叉树节点类
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def __init__(self):
# 初始化最大路径和为负无穷
self.max_sum = float('-inf')
def maxPathSum(self, root):
# 调用辅助函数计算最大贡献值
self.max_gain(root)
return self.max_sum
def max_gain(self, node):
# 若节点为空,返回 0
if not node:
return 0
# 递归计算左子树的最大贡献值,若为负则取 0
left_gain = max(self.max_gain(node.left), 0)
# 递归计算右子树的最大贡献值,若为负则取 0
right_gain = max(self.max_gain(node.right), 0)
# 计算当前节点作为路径转折点时的最大路径和,节点的最大路径和取决于该节点的值与该节点的左右子节点的最大贡献值
cur_node_path_price = node.val + left_gain + right_gain
# 更新最大路径和
self.max_sum = max(self.max_sum, cur_node_path_price)
# 返回当前节点作为路径一部分时的最大贡献值
return node.val + max(left_gain, right_gain)
def main():
# 构建一个简单的二叉树
# -10
# / \
# 9 20
# / \
# 15 7
root = TreeNode(-10)
root.left = TreeNode(9)
root.right = TreeNode(20)
root.right.left = TreeNode(15)
root.right.right = TreeNode(7)
solution = Solution()
# 调用 maxPathSum 方法计算最大路径和
result = solution.maxPathSum(root)
print("二叉树中的最大路径和为:", result)
if __name__ == "__main__":
main()
- 时间O(N):N是二叉树中的节点数。每个节点最多被访问一次。
- 空间O(H):H是二叉树的高度。递归调用栈的深度最大为二叉树的高度。在最坏情况下,二叉树退化为链表,空间复杂度为O(N)。
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
ret = float('-inf')
def maxPathSum(self, root):
"""
:type root: TreeNode
:rtype: int
"""
self.res = float("-inf") # 最妙的地方就是在递归中利用全局变量,来更新最大路径的值
# 后序遍历树,返回经过root的单边最大路径和,并维护整棵树的最大路径和
def helper(root):
# 终止条件
if not root:
return 0
# 若左右分支返回的值为负数,则对路径和做负贡献,直接舍弃, >0 时说明才能使路径变大
# 计算左边分支最大值,左边分支如果为负数还不如不选择
left = max(0, helper(root.left))
# 计算右边分支最大值,右边分支如果为负数还不如不选择
right = max(0, helper(root.right))
# 和全局变量比较,left->root->right 作为路径与历史最大值做比较
self.res = max(self.res, left + root.val + right)
return root.val + max(left, right) # 只返回包含当前根节点和左子树或者右子树的路径,
# 返回经过root的单边最大分支给上游(左子树和右子树产生的值较大的一个)
helper(root)
return self.res