机器学习笔记(二)矩估计,极大似然估计

本文介绍了机器学习中参数估计的两种方法——矩估计和极大似然估计。矩估计通过样本统计量求解总体参数,如样本均值用于估计总体均值,样本方差用于估计总体方差。极大似然估计则是寻找使样本出现概率最大的参数,通过对数似然函数求导来确定参数值。文章以高斯分布为例,展示了如何运用这两种方法进行参数估计。
摘要由CSDN通过智能技术生成

1.参数估计:矩估计

样本统计量

X1,X2Xn 为一组样本,则
- 样本均值 :

X¯¯¯=1ni=1nXi

- 样本方差:
S2=1n1i=1n(XiX¯¯¯)2

样本方差的分布使用n-1而非n,是为了无偏
- k阶样本原点矩 (k=1时即均值)
Ak=1ni=1nXki

  • k阶样本中心矩 (k=2时即方差)
    Mk=1ni=1n(XiX¯¯¯)k

1.1矩估计

那么随机变量的矩和样本的矩,有什么关系?
换个提法:假设总体服从某参数为 θ θ 为记号,无特殊意义)的分布,从总体中抽出一部分样本 X1,X2Xn ,如何去估计参数 θ


假设样本是独立的
- 可以通过 X1,X2Xn ,利用前面样本统计量的公式计算样本的 k 阶矩,
- 当假设样本的 k 阶矩等于总体的 k 阶矩,可以估计出总体的参数 θ

这个就是矩估计.
  • 我们设总体的均值为 μ ,方差 σ2 ,( μ σ2 是未知的,待求)则有原点距表达式:

    f(x)={ E(X)=μE(X2)=Var(X)+[E(X)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值