1.参数估计:矩估计
样本统计量
设 X1,X2…Xn… 为一组样本,则
- 样本均值 :
X¯¯¯=1n∑i=1nXi
- 样本方差:
S2=1n−1∑i=1n(Xi−X¯¯¯)2
样本方差的分布使用n-1而非n,是为了无偏
- k阶样本原点矩 (k=1时即均值)
Ak=1n∑i=1nXki
- k阶样本中心矩 (k=2时即方差)
Mk=1n∑i=1n(Xi−X¯¯¯)k
1.1矩估计
那么随机变量的矩和样本的矩,有什么关系?
换个提法:假设总体服从某参数为 θ ( θ 为记号,无特殊意义)的分布,从总体中抽出一部分样本 X1,X2…Xn… ,如何去估计参数 θ ?
假设样本是独立的
- 可以通过 X1,X2…Xn… ,利用前面样本统计量的公式计算样本的 k 阶矩,
- 当假设样本的k 阶矩等于总体的 k 阶矩,可以估计出总体的参数θ
这个就是矩估计.
我们设
总体
的均值为 μ ,方差 σ2 ,( μ 和 σ2 是未知的,待求)则有原点距
表达式:f(x)={ E(X)=μE(X2)=Var(X)+[E(X)<