目录
前言
本章主要讲解的是数据在内存中是如何存储的,主要讲解整型类型无符号和有符号之间存储是如何转换存储的。
一、C语言内置的基本数据类型
我们知道C语言开始使用会介绍char、int、float和double这四种类型,但是其实还有其他的基础类型的如:short、long[int]、long long[int] 等其他的类型,在long里int是可以省略的。
char
//
字符数据类型
short
//
短整型
int
//
整形
long
//
长整型
long long
//
更长的整形
float
//
单精度浮点数
double
//
双精度浮点数
|
这边我们要注意一下数据类型存在的意义:
1.使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 此类型是如何看待内存空间的
类型的基本归类
整型家族
char
unsigned char
signed char
short
unsigned short
[
int
]
signed short
[
int
]
int
unsigned int
signed int
long
unsigned long
[
int
]
signed long
[
int
]
|
这边可能会疑问,为啥char类型也是归类在整型里的,因为字符在内存中存储的是字符ASCII码值,ASCII码值是整型,使用字符类型就归类到了整型家族啦,哈哈哈所以都是自家人啦(doge。
浮点数家族
float
double
|
浮点数这边的话,别看只有两种,其实还有个long double类型的,只不过用到的地方相对来说比较少,主要是double这个范围也够用了。
空类型
二、整型类型内存中的存储
因为计算机能够处理的是二进制数据,所以整型和浮点型数据在内存中也都是以二进制进行存储的。
这边给到两个变量,你知道他是如何存储的码?
int
a
=
30
;
int
b
=
-11
;
|
我们知道在a分配四个字节的空间,在细节上我们接下来了解一下下面的概念把。
1.整型里原码、反码、补码
计算机中的整型有三种二进制的表示方法:原码、反码、补码。
三种表示方法均有符号位和数值位两部分,在符号位中0表示为正数,1为负数。
但是捏在正整数中三码都是一样的,不会发生任何改变。
负数就不一样了,负整数中三码都是以不同的方式展示出来的。
这边简单介绍一下原码、反码、补码的原理
原码:
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:
在反码的基础上+1就得到补码啦。
对整型来说,数据存储在内存中的其实都是补码。
为啥捏?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值位进行统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。
不相信?
这边给你看看整型30和-10是如何存储的吧,上图:
这边我在内存中查看了一下,变量a整型这边还能理解,但是为啥b整型内存里都是fff呢?而且为啥f6还有1e是在前面的呢,正常来说不是在后面才对吗?
接下来就慢慢给大家解释吧。
2.大小端介绍
其实大小端全名叫做:大端字节序存储、小端字节序存储。
那什么是大小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
如:
我们来看看百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
这样我们就能查到该机器是小端还是大端啦。
3.char类型转换int类型数据的变化
我们看看这一道题目,看看会输出什么来?
//输出什么?
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
会惊奇的发现变量c怎么变成255了,我们逐步分析一下:
首先我们算算-1的三码为多少
-1补码我们求出是全是1,那char类型就会截取第一位字节,也就是前8位bit,又由于是unsigned无符号类型,所以全部数据都是数据域,但是我们又以%d 十进制有符号位去打印数据,就会对char类型整体内存提升,也就上图的原码255,所以255就是这么来哒啦。
既然都算到这里了,我们也算算变量a为啥没有变化吧
okok这里大致能理解char和int在内存转换中如何运转的了吧
三、浮点型在内存的存储
1.常见的浮点数
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义
2.浮点数例子:
int main()
{
int n = 10;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 10.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
我们会发现,欸,都是什么乱七八糟的值,怎么浮点类型转换为整型会变成这样的?
这里我们就该提一下国际标准ieee754了,是一个电气和电子工程协会创立出来的。
3.浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
浮点数内存转换相对来说比较复杂,感兴趣的读者可以在网上找找关于ieee754的相关资料进行了解的。
总结
本文章主要介绍了数据类型的种类以及整型类型转换过程,还有原码反码补码,以及大小端在内存中是作什么作用而存在的,相较于底层的知识点理论可能会比较枯燥,感兴趣的朋友想在详细了解的话,可以查阅相关书籍去了解一下喔,如文章中有什么疑问或者错误,欢迎大家一起沟通交流和指出问题。