(图文并茂)深度学习实战(4):从mnist数据集里面提取出图片数据
经过上一篇的(图文并茂)深度学习实战(3):mnist手写体识别案例,我们运行了caffe自带的mnist手写体案例,获得了一个mnist的模型,并且使用这个模型来预测了一下。但是是不是觉得不够可视化?数据集样子也看不到,而且都是使用sh脚本,很多不熟悉?
还有最重要的一点,就是官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片,因此我们的练习就从图片开始。
所以今天介绍一下从mnist数据集里面提取出图片数据的做法。
1.mnist二进制数据集介绍
由于在caffe下下载好的mnist数据集是类似于t10k-images-idx3-ubyte这样的二进制文件,mnist 原二进制文件是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集;
训练集是有60000个用例的,也就是说这个文件里面包含了60000个标签内容,每一个标签的值为0到9之间的一个数。
图示:
2.Python将MNIST数据集转化为图片
编写两个.py文件:分别用来提取测试集,训练集: