网商银行原生分布式数据库:高敏数据保护实践探析

在数字化转型的浪潮中,金融行业对数据安全性的要求日益严苛。浙江网商银行作为行业的佼佼者,其在原生分布式数据库的高敏数据保护实践方面提供了宝贵的经验。本文将从第三方角度,深入探讨网商银行如何通过技术创新,实现高敏数据的智能识别、加密保护,以及在方案实施过程中的风险管控。

一、背景与挑战

网商银行在业务发展过程中,面临着日益严格的安全与合规要求。从国家顶层设计到具体的法律法规,如网络安全法、个人信息保护法、数据安全法等,都对金融数据安全提出了明确的要求。特别是在个人金融信息保护方面,涵盖了数据收集、传输、存储、使用、删除、销毁的全生命周期。

然而,实现数据加密保护并非易事。网商银行在实践过程中遇到了多重挑战,如数据识别难度大、影响系统广泛、核心系统改造风险高、存量数据多、数据可用性风险高以及性能损耗大等问题。

二、技术架构演进

为了应对这些挑战,网商银行在数据库架构上进行了多次升级。从最初的自主创新,使用普通x86服务器,到同城三中心双活、异地多活、三地五中心的架构,再到最近的个人信息保护和国家商用密码透明加密的实施,网商银行不断优化其数据库架构,以提高成本效益、容灾能力、安全性、稳定性和容量。

三、高敏数据智能识别

网商银行采用了一套复杂的高敏数据智能识别流程,包括数据采样、算法分析、血缘提升和其他辅助手段。通过在线库和离线数仓的数据采样,结合特征提取和模式识别的算法分析,以及数据图谱和图计算的血缘提升,实现了对高敏数据的精准识别。

四、数据加密保护方案

在数据加密保护方面,网商银行探索了多种方案,包括应用内加密、数据中间件加密、数据库透明加密和全加密数据库。每种方案都有其优势和挑战,例如应用内加密的灵活性和高改造成本,数据中间件加密的高性能与高可用难度,以及数据库透明加密的中等性能损耗和较低的可防范DBA风险。

五、风险管控与未来展望

在方案实施过程中,网商银行着重于风险管控,包括密钥管理、数据加密存储、数据解密读取和业务性能等方面。同时,设计了应急方案和灰度过程,以确保在出现问题时能够快速响应和恢复。

展望未来,随着技术的不断进步和业务需求的日益增长,网商银行将继续优化其数据库架构和高敏数据保护方案,以应对新的挑战和机遇。

总结来说,网商银行在原生分布式数据库的高敏数据保护实践方面,不仅展现了其在技术创新上的实力,也为金融行业的数据安全保护提供了宝贵的参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值