在当今数字化时代,数据成为企业发展的关键驱动力。对于像虎牙这样在实时内容创作与直播互动领域不断创新的公司来说,高效管理和利用数据至关重要。虎牙基于图数据库构建的应用元数据平台,在解决实际业务问题中发挥了重要作用,其相关实践经验值得深入探讨。
一、项目背景:解决数据管理痛点
虎牙在业务发展过程中,面临着应用资源数据割裂等问题。比如,不同的可视化产品、应用标签之间的数据无法有效关联,导致在分析应用架构合理性、计量应用资源关系时困难重重。为了解决这些痛点,虎牙明确了项目的切入点和目标,即梳理公司的产品与业务、支撑的应用服务,明晰应用关联关系和资源计量关系,进而优化应用架构。从关系总览来看,涵盖了人、应用、资源等多方面复杂关系,包括应用链路关系、员工与应用关系、应用资源计量关系、指标关系以及应用标签关系等 。以一个简单的直播场景为例,用户发送礼物这一操作,涉及多个应用服务之间的调用,背后是复杂的资源计量和指标关系,传统的数据管理方式难以清晰呈现和处理这些关系。
二、方案选型:图数据库优势凸显
在数据库选型时,虎牙对比了图数据库和关系型数据库。从应用场景看,图数据库适用于知识图谱、网络拓扑、安全风控、实时推荐和社交等场景,这些场景往往涉及复杂的关系查询。通过本地自测查询耗时对比发现,在处理社交场景中的多跳查询时,随着查询度数增加,关系型数据库的查询耗时剧增,如 5 度查询时,Mysql 数据库耗时高达 226.9 秒,而 Hugegraph 图数据库仅需 0.14 秒 。这是因为图数据库以图论为基础,使用图模型对关联数据中的实体、关系进行建模,在处理复杂关系查询时,性能远远优于传统关系型数据库,更适合虎牙业务中复杂的关联数据处理需求。
在选择具体的图数据库时,虎牙考虑了开源、关系处理能力、分布式架构、社区活跃度、大厂背书以及周边设施等要点,最终选择了 HugeGraph。
三、系统架构:多层面优化与扩展
虎牙应用元数据平台的系统架构包含展示 / 对接层、业务模块层和存储层。展示 / 对接层与 CMDB、容器平台等多个外部服务对接;业务模块层通过 Gateway 与图引擎交互;存储层则负责数据的持久化存储。
在性能调优方面,平台遇到过性能压测导致的内存泄漏等问题。通过分析和实践,虎牙团队向 HugeGraph 社区贡献了多个 PR,修复了如索引标签、代码检查风格、SQL 语句泄漏等问题 ,有效提升了系统性能。在 SPI 扩展上,HugeGraph 框架提供了自定义分词等扩展点,方便开发者根据业务需求进行定制化开发。在基础组件集成上,平台整合了 mysql、redis 等多种组件,实现了对不同类型数据的高效管理和查询,通过调用链监控,能够实时了解接口的请求数和耗时情况。
四、业务实践:多场景应用成效显著
在资源总览方面,平台能够清晰展示用户及下属应用的详细信息,包括服务总数、实例总数、CPU 总核数等,方便管理员对资源进行统一管理和调配。例如,通过平台可以快速知晓虎牙直播不同业务模块在各个机房的资源使用情况。
网络拓扑功能呈现了主机、IDC 机房、实例、管理员和服务之间的关系,为网络管理和故障排查提供了直观依据。应用标签功能允许用户为应用添加自定义标签,如 high - disk - write 等,便于对应用进行分类和管理,快速定位具有特定特征的应用。
跨机房调用功能则详细统计了不同机房之间的调用情况,包括请求数、流量、调用类型等,还能给出治理建议,帮助优化网络架构,降低跨机房调用成本。例如,通过分析发现某些异地跨机房调用流量过大,可针对性地进行优化。
开放平台连接了一切应用和资源,构建多维复杂关系网络,提供快速检索和智能分析能力,方便外部应用接入。面对安全漏洞问题,平台利用图数据库构建应用 -> 实例 -> 制品关系数据,结合漏洞扫描和告警平台,提升了漏洞处理效率,减少了人工处理的沟通成本和效率低下问题。
五、未来展望:拓展应用边界
虎牙的图数据平台未来有着广阔的发展空间。在直播社交领域,可以进一步挖掘用户关系,优化推荐系统,提升用户体验;在知识图谱构建上,能够整合更多业务数据,提供更智能的搜索和分析服务;在实时推荐方面,借助图数据库的高效处理能力,实现更精准的内容推荐 。随着技术的不断进步和业务的持续发展,相信虎牙的应用元数据平台将不断完善,为直播行业的数据管理和业务创新提供更多的可能性。
虎牙基于图数据库的应用元数据平台实践,为其他企业在处理复杂数据关系、优化业务流程方面提供了宝贵的借鉴经验。通过不断探索和创新,图数据库在各个领域的应用潜力将得到更充分的释放。