我觉得需要……需要速度!”---《Top Gun》
笔者上次写了一篇位图算法实践,介绍了位图算法的概念,编写了一个代码案例并对比了快速排序算法,实践结果性能提高9倍以上,结果还是非常不错的,但正如汤姆克鲁斯在电影《Top Gun》中吐露的心声:人类对于性能的追求是永无止境的!快如剃刀的位图算法是否还有进一步优化的空间呢?
答案是肯定的!
再次审视分析位图算法的代码实现逻辑:就是依次遍历排序数列,以数值为索引给位图数组赋值。静心深思,大脑中很快就蹦出了优化思路:这个遍历赋值的过程是单线程操作,程序开发早就就进入多核时代,完全可以将排序数列进行分治,交给多个线程并发处理。这样肯定能进一步大大提高排序性能!
思路一出,笔者当下大为兴奋,接下来就是继续实践开干了,优化思路也很简单:
- 创建一个线程池,线程数为两倍电脑CPU个数;
- 根据排序数据个数以及线程数,计算分区排序个数;
- 启动线程池,每个线程对所负责数据分区进行排序
代码实现如下:
import common.utils;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import static java.lang.Math.min;
public class BitmapSortEx {
private static final int MAX = 2000000000;
private static final int COUNT = 400000000;
public static void main(String[] args) {
System.out.println("排序数值最大值:" + MAX);
System.out.println("排序数值个数:" + COUNT);
int[] datas = utils.getRandomData(COUNT, MAX);
final int len = (int) Math.ceil(MAX / 8.0);
long costTime = singleThreadSort(datas, len);
multiThreadSort(datas, len, costTime);
}
// 单线程排序方法,返回运行时间,给多线程排序作为线程池等待超时时长
private static long singleThreadSort(int[] datas, int len) {
byte[] bytes = new byte[len];
long start = System.currentTimeMillis();
bitmapSort(datas, bytes);
long costTime = System.currentTimeMillis() - start;
System.out.println("单线程位图排序时间:" + costTime + "毫秒");
return costTime;
}
// 位图排序法,无法处理重复数据
private static byte[] bitmapSort(int[] data, final byte[] bytes) {
for (int i = 0; i < data.length; i++) {
int j = data[i] >> 3;
int k = data[i] % 8;
bytes[j] = utils.setByte(bytes[j], k);
}
return bytes;
}
// 多线程排序方法
private static void multiThreadSort(int[] datas, int len, long costTime) {
byte[] bytes = new byte[len];
final int nThreads = Runtime.getRuntime().availableProcessors() * 2;
System.out.println("多线程排序启动线程数:" + nThreads);
long start = System.currentTimeMillis();
ExecutorService executorService = Executors.newFixedThreadPool(nThreads);
int portion = calcNumPortion(COUNT, nThreads);
for (int i = 0; i < nThreads; i++) {
final int from = portion * i;
final int to = min(portion * (i + 1), COUNT);
executorService.execute(() -> {
bitmapSort(datas, from, to, bytes);
});
}
executorService.shutdown();
try {
// 等待所有线程结束,完成时间应该小于单线程花费时间
executorService.awaitTermination(costTime, TimeUnit.MILLISECONDS);
System.out.println("多线程位图排序时间:" + (System.currentTimeMillis() - start) + "毫秒");
//utils.printBitData(bytes);
} catch (InterruptedException e) {//如果被中断了
}
}
private static int calcNumPortion(int data, int parts) {
int portion = data / parts;
if ((data % parts) > 0)
portion++;
return portion;
}
// 位图排序法,无法处理重复数据
private static byte[] bitmapSort(int[] data, int from, int to, final byte[] bytes) {
for (int i = from; i < to; i++) {
int j = data[i] >> 3;
int k = data[i] % 8;
bytes[j] = utils.setByte(bytes[j], k);
}
return bytes;
}
}
运行输出如下:
排序数值最大值:2000000000
排序数值个数:400000000
单线程位图排序时间:12099毫秒
多线程排序启动线程数:8
多线程位图排序时间:7463毫秒
可以看出多线程版本运行时间只有单线程的61.7%左右,还是取得很大进步。
程序性能优化之程永无止境,需要用心去做,一路精进。