Sigmoid | Softmax | |
---|---|---|
适用场景 | 多标签分类问题(多个正确答案,如一张图片属于猫类也属于动物类) | 单标签分类(也称:多类分类)问题(只有一个正确答案,如一个数字只能是1或2或…)【多标签分类问题也可以】 |
输出 | 输出值累和不为1,设置一个阈值,超过即为该类。 | 输出值累和为1(满足概率的性质),可以选取概率最大的作为预测结果.【也可以设置阈值或选择最大概率的几个实现多标签分类问题】 |
二分类 | "二分类"任务最后一层全连接层的神经元个数为1。符合两点分布:只有是目标和不是目标之分,实际上只存在一类目标类,另外一个是背景类。分类成目标类别的概率P【输出值】,而不分类到该类别的概率是(1 - P)【不是输出值,而是计算得到】。设置一个阈值判断是否属于目标类。 | "二分类"任务最后一层全连接层的神经元个数是2。多项分布退化为二项分布:有A类和B类之分。 |
Sigmoid与Softmax的区别
最新推荐文章于 2024-09-13 08:27:54 发布
本文详细介绍了Sigmoid和Softmax两种常用的激活函数在分类问题中的应用。Sigmoid适用于二分类问题,输出值介于0和1之间,常设置阈值判断类别;而Softmax则用于多类分类,输出值构成的概率分布总和为1,可直接取概率最大类。此外,Softmax也可扩展应用于多标签分类,通过设置阈值或选取最高概率的类别。了解这两种函数的区别和联系对于理解和优化神经网络模型至关重要。
摘要由CSDN通过智能技术生成