- 博客(303)
- 收藏
- 关注

原创 【人工智能】人工智能的数学基础
人工智能(AI)的学习路线通常分为几个阶段,涉及数学基础、编程技能、机器学习、深度学习以及相关工具的掌握。本文是对数学基础部分的整理和总结,目前不断学习整理更新中.....
2024-11-12 10:43:43
311

原创 【机器学习】机器学习中用到的高等数学知识
机器学习是一个跨学科领域,涉及多种高等数学知识。掌握这些高等数学知识可以帮助理解机器学习算法的工作原理和实现过程。在实际应用中,建议结合编程实践,如使用 Python 中的 NumPy 和 SciPy 库进行线性代数和数值计算,使用 scikit-learn 进行统计分析和机器学习建模。通过理论与实践相结合,能够更深入地理解机器学习的核心概念和应用。
2024-11-07 09:38:28
654

原创 人工智能学习路线
人工智能学习的过程是循序渐进的,先打好数学和编程基础,然后逐步深入机器学习和深度学习,最后通过实际项目和工具框架的使用巩固知识。
2024-10-30 14:08:07
752
1
原创 【漫话机器学习系列】087.常见的神经网络优化算法
在深度学习中,优化算法(Optimizers)用于更新神经网络的权重,以最小化损失函数(Loss Function)。一个高效的优化算法可以加速训练过程,并提高模型的性能和稳定性。本文介绍几种常见的神经网络优化算法,包括随机梯度下降(SGD)、带动量的随机梯度下降(Momentum SGD)、均方根传播算法(RMSProp)以及自适应矩估计(Adam),并提供相应的代码示例。
2025-02-09 10:17:38
391
原创 【漫话机器学习系列】086.机器学习中的能力(Capacity)
在机器学习中,模型的能力(Capacity)是一个重要的概念,它决定了模型能够学习的函数复杂度。简单来说,能力衡量了一个模型拟合不同函数的能力。能力越强的模型,能够学习更复杂的数据模式,但也更容易发生过拟合(Overfitting);能力较弱的模型可能难以学习数据中的复杂模式,导致欠拟合(Underfitting)。
2025-02-09 10:17:17
283
原创 【数学趣题】百钱买百鸡问题解析与代码实现
“百钱买百鸡”是一个经典的数学趣题,也是一道著名的整数方程问题,该问题导致三元不定方程组,其重要之处在于开创“一问多答”的先例,最早见于《张丘建算经》(约公元5世纪),这是一部中国古代数学著作,主要讲述了算术和代数问题。该问题是其中一个经典的整数方程问题,后来在《算经十书》(中国古代数学教材)中被广泛传播。本文将详细介绍该问题的背景、数学解法,并提供 Python、Java 和 C++ 三种编程语言的实现代码。
2025-02-08 12:03:40
324
原创 【漫话机器学习系列】085.自助采样法(Bootstrap Sampling)
在统计学和机器学习领域,数据的充足性直接影响模型的性能。然而,在许多实际场景中,我们可能无法获得足够的数据。为了解决这个问题,自助采样法(Bootstrap Sampling) 被广泛应用于模型训练和评估。该方法通过有放回地重复抽样,来模拟更多的训练数据集,以提高模型的稳定性和泛化能力。
2025-02-08 10:26:32
607
原创 【深度学习框架】JAX:高效的数值计算与深度学习框架
JAX 是由 Google Research 开发的 高性能数值计算库,主要用于 机器学习、深度学习 和 科学计算。它基于 NumPy 的 API,但提供了 自动微分(Autograd)、XLA 编译加速 和 高效的 GPU/TPU 计算,使其成为 TensorFlow 和 PyTorch 的强劲竞争者。JAX 是一个未来 AI 计算的重要工具,适用于高效数值计算和深度学习,尤其适合 Google Cloud、TPU 和科学计算 领域!
2025-02-08 10:16:28
458
原创 【环境配置】安装与配置 CUDA 和 cuDNN 环境,支持多种 GPU 加速框架
以下是在 Windows 10 下安装和配置 CUDA 框架的详细步骤,包括安装 CUDA Toolkit、cuDNN 以及配置深度学习框架(如 TensorFlow 和 PyTorch)的示例。
2025-02-07 11:11:47
830
原创 【漫话机器学习系列】084.偏差和方差的权衡(Bias-Variance Tradeoff)
在机器学习模型的训练过程中,我们常常面临一个重要的挑战:如何平衡 偏差(Bias) 和 方差(Variance),以提升模型的泛化能力。偏差-方差权衡(Bias-Variance Tradeoff)描述了模型在复杂度上的取舍,过高的偏差可能导致欠拟合,而过高的方差可能导致过拟合。理解这个概念对于构建高效的机器学习模型至关重要。
2025-02-07 10:14:41
437
原创 【漫话机器学习系列】083.安斯库姆四重奏(Anscombe‘s Quartet)
安斯库姆四重奏(Anscombe's Quartet)是一组由统计学家弗朗西斯·安斯库姆(Francis Anscombe) 在 1973 年 提出的 四组数据集。它们的均值、方差、回归直线、相关系数等统计量几乎相同,但当绘制成图表时却呈现出完全不同的分布形态。这个四重奏展示了数据可视化的重要性,表明仅凭统计数值不能全面反映数据的真实分布。
2025-02-06 15:27:21
775
原创 【漫话机器学习系列】082.岭回归(或脊回归)中的α值(alpha in ridge regression)
岭回归(Ridge Regression)是一种 带有 L2 正则化 的线性回归方法,用于处理多重共线性(Multicollinearity)问题,提高模型的泛化能力。其中,α 值(正则化强度) 是岭回归的关键超参数,它决定了正则化项的权重。
2025-02-06 15:20:06
764
原创 【人工智能】DeepSeek本地安装部署保姆级手册
年过完了,过年期间DeepSeek的热点不断,今天上班第一天,尝试在本地部署一下DeepSeek,还算比较顺利,虽然已经很多相关文章教程了,还是决定把整个部署过程分享一下,希望对大家有那么一点点的帮助!
2025-02-05 10:40:15
1173
原创 【漫话机器学习系列】081.测量理论(Almost Everywhere)
在测量理论(Measure Theory)中,“几乎处处”(Almost Everywhere,简称 a.e.)是一个重要的概念,用于描述在某个测度空间(Measure Space)中,某个性质或条件在除去一个零测集(Measure Zero Set)之外的所有点上都成立。换句话说,如果一个性质在测度空间中的“几乎所有”点上都成立,那么我们就说这个性质“几乎处处”成立。
2025-02-05 09:37:29
994
原创 【深度学习框架】MXNet(Apache MXNet)
MXNet(Apache MXNet)是一个高性能、可扩展的开源深度学习框架,支持多种编程语言(如 Python、R、Scala、C++ 和 Julia),并能在 CPU、GPU 以及分布式集群 上高效运行。MXNet 是亚马逊 AWS 官方支持的深度学习框架,并且被用于 Amazon SageMaker 等云端 AI 服务。MXNet 适合大规模云端AI训练,特别是多GPU和分布式环境,但在社区生态方面不如 TensorFlow 和 PyTorch 强大。
2025-02-05 09:25:42
1037
原创 【漫话机器学习系列】080.准确率(Accuracy)
准确率(Accuracy) 是分类问题中最常见的评价指标之一,表示模型预测正确的样本数量占总样本数量的比例。准确率简单易懂,但在数据不平衡的情况下可能无法很好地反映模型的实际表现。准确率是一个直观且简单的评价指标,但在处理类别不平衡数据时需要小心使用。为了更全面地评估模型性能,尤其是在不平衡数据的情境下,通常需要结合其他评价指标,如精确度、召回率、F1分数等。
2025-02-04 09:16:52
536
原创 【漫话机器学习系列】079.超参数调优(Hyperparameter Tuning)
超参数调优(Hyperparameter Tuning)是机器学习中优化模型性能的重要步骤之一。超参数是模型在训练之前设定的参数,而不是通过训练数据学习到的参数。正确地选择超参数可以显著提高模型的预测能力,反之,错误的超参数选择可能会导致过拟合、欠拟合或训练过程缓慢。超参数调优是提升机器学习模型性能的关键步骤。选择合适的调优方法和工具可以有效提高模型的表现。在实践中,应该根据数据的特点、问题的复杂度以及计算资源等因素综合考虑,选择合适的调优方法。
2025-02-04 09:16:28
942
原创 【漫话机器学习系列】078.如何选择隐藏单元激活函数(How To Choose Hidden Unit Activation Functions)
选择隐藏单元激活函数是神经网络设计中的一个重要步骤,它直接影响到模型的学习能力和训练效果。不同的激活函数具有不同的性质和适用场景,因此在选择时需要根据模型的需求和问题的特性来决定
2025-02-03 09:42:13
1175
原创 【漫话机器学习系列】077.范数惩罚是如何起作用的(How Norm Penalties Work)
范数惩罚(Norm Penalty) 是一种常用于机器学习模型中的正则化技术,它的主要目的是控制模型复杂度,防止过拟合。通过对模型的参数进行惩罚(即在损失函数中加入惩罚项),使得模型的参数尽可能小或具有某种特定的结构,从而提升模型的泛化能力。范数惩罚通过限制模型参数的大小或数量,防止模型过拟合并提高泛化能力。L1范数惩罚具有特征选择的效果,而L2范数惩罚则通过平滑模型来减少复杂性。Elastic Net 结合了两者的优点,适用于更多的实际场景。
2025-02-03 09:41:52
891
原创 【漫话机器学习系列】076.合页损失函数(Hinge Loss)
Hinge Loss(合页损失),也叫做合页损失函数,广泛用于支持向量机(SVM)等分类模型的训练过程中。它主要用于二分类问题,尤其是支持向量机中的优化目标函数。Hinge Loss 是一种专为二分类问题设计的损失函数,它强调边际最大化,使得支持向量机(SVM)等模型不仅仅关注分类正确性,还鼓励模型产生具有大间隔的决策边界。通过这种方式,Hinge Loss 能够提高模型的泛化能力,减少过拟合的风险。
2025-02-02 09:51:50
545
原创 【漫话机器学习系列】075.隐含层(Hidden Layer)
在人工神经网络(ANN)中,隐含层是指输入层和输出层之间的层。它们由多个神经元(或节点)组成,这些神经元负责从输入层接收信号,进行处理后将信号传递给下一层(通常是输出层)。隐含层是神经网络的核心部分,能够通过非线性变换学习数据中的复杂模式。
2025-02-02 09:51:34
1126
原创 【漫话机器学习系列】074.异方差(Heteroscedasticity)
异方差(Heteroscedasticity)是指在回归分析中,误差项的方差不恒定的现象。通常,我们假设回归模型中的误差项具有恒定方差(即同方差性,homoscedasticity),这是普通最小二乘法(OLS)回归分析的一个基本假设。然而,当误差项的方差随着自变量的变化而变化时,就出现了异方差问题。异方差是回归分析中的一种常见现象,指的是误差项的方差随自变量变化而变化。异方差的存在会影响模型的有效性,导致估计结果不再最优。通过检测方法如残差图、Breusch-Pagan检验等可以发现异方差,解决方法包括变
2025-02-01 09:53:48
602
原创 【漫话机器学习系列】073.黑塞矩阵(Hessian Matrix)
黑塞矩阵(Hessian Matrix)是多变量数学中一个重要的概念,它是一个矩阵,包含了函数的二阶偏导数。黑塞矩阵在优化问题、机器学习以及深度学习中起着至关重要的作用,特别是在进行二次优化和分析函数的局部曲率时。黑塞矩阵作为多变量函数的二阶导数矩阵,提供了关于函数曲率的重要信息。它在优化算法中具有重要应用,特别是在牛顿法等算法中用于加速收敛速度。同时,黑塞矩阵在机器学习中也用于分析损失函数的性质,帮助我们判断极值点的类型(最小值、最大值或鞍点)。尽管计算复杂度较高,但它对于高效优化和精确控制学习过程非常有
2025-02-01 09:53:35
1109
原创 【漫话机器学习系列】072.异常处理(Handling Outliers)
异常处理(Handling Outliers)是数据预处理中的一个重要步骤,主要用于识别和处理数据集中的异常值或噪声。这些异常值可能是由于错误的数据输入、测量问题或某些特殊情况所引起,它们可能会影响模型的训练和预测,导致模型表现不佳。因此,识别和合理处理异常值是提升模型性能的一个关键步骤。异常值处理是机器学习和数据分析中的一个重要步骤,合理的处理异常值可以显著提高模型的性能。常见的检测方法包括统计学方法(如Z-score和IQR法)和基于模型的方法(如Isolation Forest和LOF)。在处理异常值
2025-01-31 12:01:50
1042
2
原创 【漫话机器学习系列】071.在支持向量机下,处理不平衡类别的问题(Handling Imbalanced Classes In Support Vector Machines)
在支持向量机(SVM)模型中处理类别不平衡问题是一个常见的挑战。类别不平衡意味着数据集中某些类别的样本数量远远多于其他类别,从而导致模型偏向预测多数类,而忽略少数类的样本。这可能会严重影响模型的性能,特别是在关注少数类的应用场景(如欺诈检测或疾病诊断)中。支持向量机处理不平衡类别的关键在于通过调整权重、采样策略、决策阈值等方法,减少多数类的干扰,提升少数类的预测性能。在实际应用中,可以结合具体数据分布和任务需求,选择适合的策略。
2025-01-31 12:01:17
956
原创 【漫话机器学习系列】070.汉明损失(Hamming Loss)
汉明损失是多标签分类问题中的一种评价指标,用于衡量预测结果与实际标签之间的差异。它定义为预测错误的标签比例,即错误标签的个数占总标签数量的比值。在多标签分类中,每个样本可以属于多个类别,因此汉明损失对每个样本的每个类别进行独立评估,而不关心类别之间的相关性。
2025-01-30 10:07:46
613
原创 【漫话机器学习系列】069.哈达马乘积(Hadamard Product)
哈达马乘积(Hadamard Product)是两个矩阵之间的一种元素级操作,也称为逐元素乘积(Element-wise Product)。它以矩阵的对应元素相乘为规则,生成一个新的矩阵。哈达马乘积作为一种简单而高效的操作,在矩阵运算中扮演着重要的角色,尤其是在处理逐元素运算问题时,是不可或缺的工具。
2025-01-30 10:07:33
624
原创 【漫话机器学习系列】068.网格搜索(GridSearch)
网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。网格搜索是超参数调优的重要工具,尽管其计算成本较高,但在很多情况下仍然是强大且可靠的优化方法。
2025-01-29 16:11:40
828
原创 【漫话机器学习系列】067.希腊字母(greek letters)-写法、名称、读法和常见用途
希腊字母在数学、科学、工程学和编程中广泛使用,常用于表示变量、常量、参数、角度等。以下是希腊字母的完整列表及其常见用途。希腊字母在科学和工程领域无处不在,理解其符号意义不仅能帮助快速阅读论文和教材,也能更高效地进行专业研究和问题求解。
2025-01-29 16:11:25
876
原创 【漫话机器学习系列】066.贪心算法(Greedy Algorithms)
贪心算法是一种逐步构建解决方案的算法,每一步都选择当前状态下最优的局部选项(即“贪心选择”),以期望最终获得全局最优解。贪心算法常用于解决最优化问题。贪心算法通过逐步构建解决方案,在每一步都选择当前状态下的最优选项,是解决许多经典最优化问题的强大工具。但在应用贪心算法时,需要验证问题是否满足最优子结构和贪心选择性质,否则可能无法得到正确结果。
2025-01-28 11:47:12
966
原创 【漫话机器学习系列】065.梯度(Gradient)
在数学和机器学习中,梯度是一个向量,用来表示函数在某一点的变化方向和变化率。它是多变量函数的一阶偏导数的组合。
2025-01-28 11:46:57
712
原创 【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)
为了帮助记忆梯度下降的核心原理和关键注意事项,可以用以下简单口诀来总结
2025-01-27 08:57:50
636
原创 【深度学习】常见模型-Transformer模型
Transformer 是一种深度学习模型,首次由 Vaswani 等人在 2017 年提出(论文《Attention is All You Need》),在自然语言处理(NLP)领域取得了革命性成果。它的核心思想是通过 自注意力机制(Self-Attention Mechanism) 和完全基于注意力的架构来捕捉序列数据中的依赖关系。Transformer 以其强大的表达能力和灵活性,已经成为深度学习领域的重要基石,为 NLP 和其他领域带来了巨大变革。
2025-01-27 08:49:15
2396
原创 Spring Boot 高级开发指南:全面掌握微服务架构的关键技术
Spring Boot 是现代 Java 开发的主流框架,尤其在构建微服务架构时,它提供了丰富的工具与功能,帮助开发者快速构建高效、健壮的系统。本文将围绕 13 个关键的高级概念展开,逐一分析 Spring Boot 在微服务开发中的核心技术,包括配置与属性管理、Bean 生命周期与作用域、国际化、缓存、部署运维、弹性微服务、分布式事务等,配合实际代码与案例,帮助开发者深入理解和应用 Spring Boot。
2025-01-26 10:37:32
1210
原创 【漫话机器学习系列】063.梯度下降(Gradient Descent)
梯度下降(Gradient Descent)是一种优化算法,用于通过迭代更新模型参数,最小化目标函数(通常是损失函数)。它是机器学习和深度学习中最常用的优化方法之一。梯度下降是机器学习和深度学习中的基础优化方法,尽管简单,但却非常强大。通过调整学习率和结合先进优化算法(如 Adam),梯度下降可以高效解决许多复杂的模型优化问题。理解其原理和实现是深入学习机器学习的关键步骤。
2025-01-26 09:36:24
890
原创 【深度学习】常见模型-自编码器(Autoencoder, AE)
自编码器是一种无监督学习模型,通常用于数据降维、特征提取、去噪等任务。其核心思想是利用神经网络将输入数据压缩到低维表示(编码),再通过解码器将其还原为原始数据的近似值。自编码器的目标是最小化原始数据与重构数据之间的误差。自编码器在数据分析和生成领域中具有广泛的应用前景,是深度学习的重要工具之一。
2025-01-26 09:18:29
573
原创 【漫话机器学习系列】062.向前逐步选择法(Forward Stepwise Selection)
向前逐步选择法是一种特征选择(Feature Selection)算法,主要用于模型构建时,从一组候选特征中逐步选择对模型性能影响最大的特征。通过迭代的方式,逐步向模型中添加特征,直到模型达到预期的性能或满足某些停止准则。向前逐步选择法是一种经典的特征选择技术,适合特征数量适中且需要解释性强的场景。尽管存在一定局限性,它仍然是特征选择过程中一个重要的参考方法。通过结合正则化、交叉验证等技术,可以进一步提高其效率和性能。
2025-01-25 09:19:54
740
原创 【漫话机器学习系列】061.线性回归参数计算(Finding Linear Regression Parameters)
线性回归是一种基础的回归模型,用于通过一个或多个特征预测目标变量。线性回归是回归分析中的基础方法,为其他复杂模型(如岭回归、Lasso回归和广义线性模型)提供了理论基础。
2025-01-25 09:19:39
801
原创 【漫话机器学习系列】060.前馈神经网络(Feed Forward Neural Networks, FFNN)
前馈神经网络是一种最基本的人工神经网络结构,是深度学习的基础。数据从输入层开始,依次经过隐藏层,最终传递到输出层,不存在任何循环或反馈。其名称中的“前馈”指的是数据只在网络中向前传播。前馈神经网络是深度学习中最基础的网络结构。尽管其原理简单,但可以通过堆叠多个隐藏层捕获复杂模式。配合优化算法和激活函数,前馈神经网络能在多种任务中表现出色,是深入理解其他神经网络(如卷积神经网络、循环神经网络)的重要基础。
2025-01-24 10:44:48
865
原创 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
生成对抗网络(Generative Adversarial Network, GAN)是一种深度学习模型框架,由 Ian Goodfellow 等人在 2014 年提出。GAN 由 生成器(Generator) 和 判别器(Discriminator) 两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN 在图像生成、文本生成、数据增强等领域中有广泛应用。GAN 的对抗思想极具创新性,为生成任务提供了一种全新的解决方案,是深度学习领域的里程碑技术之一。
2025-01-24 10:32:07
1085
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人