支持向量机是一种强大的监督学习算法,主要用于分类问题,但也可以用于回归和异常检测。SVM 的核心思想是通过最大化分类边界的方式找到数据的最佳分离超平面。
1. 核心思想
目标
给定训练数据 ,其中
是特征向量,
是标签,SVM 的目标是找到一个超平面将数据分开,同时最大化分类边界的间隔。
决策函数
超平面可以表示为:
其中:
- w 是超平面的法向量。
- b 是偏置项,决定超平面与原点的距离。
分类条件:
优化目标
最大化边界的间隔(Margin),即:
支持向量机是一种强大的监督学习算法,主要用于分类问题,但也可以用于回归和异常检测。SVM 的核心思想是通过最大化分类边界的方式找到数据的最佳分离超平面。
给定训练数据 ,其中
是特征向量,
是标签,SVM 的目标是找到一个超平面将数据分开,同时最大化分类边界的间隔。
超平面可以表示为:
其中:
分类条件:
最大化边界的间隔(Margin),即: