贝叶斯误差(Bayes Error)
贝叶斯误差是机器学习和统计分类中一个理论最优的误差界限,定义为任何分类器在给定数据分布上的最低可能误差。贝叶斯误差反映了分类问题的内在困难,与模型或算法无关。
贝叶斯误差的定义
贝叶斯误差源自贝叶斯分类器的理论性能,公式如下:
符号说明:
:在特征 x 下,类别 c 的后验概率。
:期望值,表示对输入分布 P(x) 求平均。
贝叶斯误
贝叶斯误差是机器学习和统计分类中一个理论最优的误差界限,定义为任何分类器在给定数据分布上的最低可能误差。贝叶斯误差反映了分类问题的内在困难,与模型或算法无关。
贝叶斯误差源自贝叶斯分类器的理论性能,公式如下:
贝叶斯误