【漫话机器学习系列】018.Boosting算法

Boosting算法:集成学习的重要方法

Boosting 是一种集成学习方法,通过将多个弱学习器(weak learners)组合成一个强学习器(strong learner),以提高模型的预测准确性。Boosting 算法在迭代过程中会关注那些被前一轮学习器错误分类的样本,逐步提升整体模型的表现。


Boosting的工作原理

Boosting 的核心思想是逐步改进

  1. 初始化样本权重,赋予每个样本相等的权重。
  2. 在每轮迭代中,训练一个弱学习器(例如决策树),并根据其在当前加权样本上的错误率评估性能。
  3. 更新样本权重:提高被当前弱学习器分类错误的样本权重,使其在下一轮中得到更多关注。
  4. 最终将多个弱学习器的输出按照权重加权组合成最终的强学习器。

Boosting的数学表示

假设我们有一个数据集 D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\},目标是通过 Boosting 构造一个强学习器 H(x)。

  1. 初始化样本权重
    初始化每个样本的权重 w_i 为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值