Boosting算法:集成学习的重要方法
Boosting 是一种集成学习方法,通过将多个弱学习器(weak learners)组合成一个强学习器(strong learner),以提高模型的预测准确性。Boosting 算法在迭代过程中会关注那些被前一轮学习器错误分类的样本,逐步提升整体模型的表现。
Boosting的工作原理
Boosting 的核心思想是逐步改进:
- 初始化样本权重,赋予每个样本相等的权重。
- 在每轮迭代中,训练一个弱学习器(例如决策树),并根据其在当前加权样本上的错误率评估性能。
- 更新样本权重:提高被当前弱学习器分类错误的样本权重,使其在下一轮中得到更多关注。
- 最终将多个弱学习器的输出按照权重加权组合成最终的强学习器。
Boosting的数学表示
假设我们有一个数据集 ,目标是通过 Boosting 构造一个强学习器 H(x)。
-
初始化样本权重
初始化每个样本的权重为: