【漫话机器学习系列】126.多项式回归(Polynomial Regression)

多项式回归(Polynomial Regression)

1. 什么是多项式回归?

多项式回归(Polynomial Regression)是一种用于建模非线性关系的回归分析技术。它是线性回归的一种扩展形式,允许模型通过增加自变量的高次项来更好地拟合数据。多项式回归的数学公式如下:

y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d + e_i

其中:

  • y_i 是因变量(响应变量)。
  • x_i​ 是自变量(解释变量)。
  • \beta_0, \beta_1, \dots, \beta_d 是回归系数。
  • d 是多项式的最高阶次。
  • e_i​ 是误差项。

2. 为什么使用多项式回归?

在实际数据分析中,许多现象并不是单纯的线性关系,而是呈现一定的非线性趋势。例如:

  • 经济数据中的增长趋势可能是指数增长,而非简单的线性增长。
  • 物理现象中的运动轨迹可能遵循二次或更高次的曲线,而不是直线。
  • 生物数据中的生长模式可能符合某种非线性曲线。

多项式回归的一个关键优势是它可以通过引入 x 的高次项来逼近复杂的非线性关系。

3. 线性回归 vs. 多项式回归

从图片中的图示可以看出:

  • 线性回归(左图):数据点之间的关系被一个直线拟合,这种方法适用于变量之间的关系大致呈线性分布的情况。但如果数据呈现弯曲趋势,线性回归的拟合效果可能较差。
  • 低阶多项式回归(中图):通过引入二次项(x^2),模型可以拟合简单的曲线,使其更加符合数据点的趋势。
  • 高阶多项式回归(右图):进一步增加多项式的阶次(如三次、四次),可以更灵活地拟合数据,但过高的阶数可能会导致过拟合(overfitting),即模型在训练数据上表现很好,但在新数据上的泛化能力较差。

4. 过拟合问题

多项式回归的一个潜在问题是过拟合(Overfitting)。当多项式的阶数过高时,模型可能会过于依赖训练数据,导致在新数据上的表现较差。例如:

  • 在训练数据上,模型可能会完全贴合数据点,甚至拟合掉噪声部分。
  • 在测试数据上,由于模型过于复杂,预测结果可能会偏离真实趋势,泛化能力降低。

解决过拟合的方法包括:

  • 选择合适的阶数:使用交叉验证(Cross-validation)选择最佳的多项式阶数。
  • 正则化(Regularization):使用 L1 或 L2 正则化(如 Ridge 或 Lasso 回归)来约束回归系数,防止模型过度复杂化。
  • 数据增强:增加数据量可以提高模型的泛化能力,减少过拟合的影响。

5. 多项式回归的应用

多项式回归在多个领域都有广泛应用,包括但不限于:

  • 经济学:预测市场趋势,例如股市价格的变化。
  • 工程学:模拟物理系统,如流体力学、机械运动轨迹等。
  • 医学:建模药物剂量与患者反应之间的关系。
  • 人工智能:在机器学习中用于数据拟合,如在 RBF(径向基函数)神经网络中使用高次多项式拟合非线性数据。

6. 代码示例(Python 实现多项式回归)

可以使用 sklearn.preprocessing.PolynomialFeatures 轻松实现多项式回归:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

# 生成模拟数据
np.random.seed(42)
x = np.linspace(-3, 3, 100).reshape(-1, 1)
y = 2 + 3 * x - 2 * x**2 + np.random.randn(100, 1) * 2  # 二次曲线 + 噪声

# 线性回归拟合
lin_reg = LinearRegression()
lin_reg.fit(x, y)
y_pred_linear = lin_reg.predict(x)

# 多项式回归拟合
poly_features = PolynomialFeatures(degree=2)  # 选择二次多项式
x_poly = poly_features.fit_transform(x)
poly_reg = LinearRegression()
poly_reg.fit(x_poly, y)
y_pred_poly = poly_reg.predict(x_poly)

# 画图比较
plt.scatter(x, y, color='blue', label='Data')
plt.plot(x, y_pred_linear, color='red', label='Linear Regression')
plt.plot(x, y_pred_poly, color='green', linestyle='dashed', label='Polynomial Regression')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Linear vs Polynomial Regression')
plt.show()

 

解释:

  • 先生成一个二次曲线的数据集,并添加噪声。
  • 用普通的线性回归拟合数据,观察效果。
  • 使用 PolynomialFeatures(degree=2) 转换数据,使其包含二次项。
  • 再使用 LinearRegression 进行拟合。
  • 最终绘制结果,可以看到多项式回归曲线(绿色虚线)相比于线性回归(红色实线)更符合数据趋势。

7. 结论

  • 多项式回归可以用于非线性数据拟合,在许多现实问题中非常实用。
  • 选择合适的阶数至关重要,过低会导致欠拟合(underfitting),过高可能导致过拟合(overfitting)。
  • 可以结合正则化方法(如 Ridge 或 Lasso)来防止过拟合,提高模型的泛化能力。

8. 参考

  • Chris Albon 的机器学习笔记
  • scikit-learn 官方文档: Polynomial Regression
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值