【漫话机器学习系列】232.所以/因为的表示符号(Therefore And Because Notation)

数学符号趣谈:所以(∴)与因为(∵)的由来与应用

数学,不仅是理性与逻辑的艺术,也藏着无数有趣的小细节。今天,带你了解两个看似简单却富有故事感的数学符号:所以(∴)因为(∵)


前言

在数学推理、逻辑推导、证明过程中,我们经常会遇到各种符号。其中,“所以”(∴)与“因为”(∵)这两个符号虽然简单,却在逻辑表达中起着重要作用。
尤其是在手写证明、课堂笔记、学术交流中,它们被广泛使用,能够极大地提高表达的简洁性和清晰度。

今天,我们就结合一张简洁可爱的图,详细讲讲它们的由来、写法和应用场景。


认识 ∴ 和 ∵

图中非常形象地说明了:

  • 三个点朝下排列(∴) —— 表示 "所以"。

  • 三个点朝上排列(∵) —— 表示 "因为"。

这其实是国际通用的数学符号,尤其在证明题、推理链条中,使用频率极高。


符号来源

∴(所以)∵(因为) 的历史可以追溯到 17 世纪初。虽然关于它们确切的起源有多种说法,但一般认为:

  • ∴ 是从拉丁文 "ergo"(所以) 的缩写演变而来。

  • ∵ 则是为了对称表示,表示推理的反向因果关系,即 "因为"。

这两个符号简单、直观、易于书写,很快就在欧洲的数学家和逻辑学家中流行开来,并沿用至今。


符号结构详解

从图中可以看到,两个符号的结构都是由三个小圆点组成:

  • 所以(∴):上方两个点,下面一个点。

  • 因为(∵):上方一个点,下面两个点。

可以简单理解为:

  • ∴:结果集中到一个点(所以)。

  • ∵:原因分散到多个因素(因为)。

这种点阵式布局,也符合人们对因果流向的直觉理解,非常巧妙。


应用示例

在实际的数学、逻辑、物理、工程等领域中,这两个符号有广泛应用。

数学证明

已知:a > b  
∵ a > b,且 b > c  
∴ a > c

 

解释:

  • 因为 (∵) 已知的条件;

  • 所以 (∴) 得到结论。


日常推理

∵ 今天下雨了  
∵ 路上湿滑  
∴ 出行需谨慎

 

这种简短明了的表达方式,让逻辑链条更加紧凑清晰。


注意事项

虽然 ∴ 和 ∵ 在非正式场合很方便,但在正式出版物(如论文、期刊)中:

  • 通常建议用文字全写("therefore","because");

  • 符号更多地用于讲义、笔记、教学资料中,或辅助板书表达。

当然,在白板推导、演示PPT、学术讨论等场景下,它们依然是非常高效的交流工具。


总结

虽然 ∴ 和 ∵ 是非常小巧的符号,但背后蕴含着数学推理的基本精神 —— 因果分明,推理严谨
它们以最简洁的方式,体现了逻辑思维的力量。

下次当你在草稿纸上写下 ∴ 或 ∵ 时,不妨想一想,它们不仅是三个小圆点,更是几百年数学精神的一种传承。


参考资料


结束语

希望今天这篇小分享,让你对数学符号又多了一份亲近感!
如果你喜欢这类“技术+趣味”结合的内容,记得点赞收藏,欢迎留言交流~
未来我还会带来更多有趣的数学小知识,比如“集合符号的起源”、“积分符号的演变史”等,敬请期待!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值