第一章 人工智能基础
第四部分:数学建模基本方法
第一节:优化问题与线性规划
内容:目标函数、约束条件,单纯形法的基本原理。
一、什么是优化问题
优化问题(Optimization Problem)是指在给定条件下,对一个目标函数进行最大化或最小化。
一般形式为:
目标函数: Max 或 Min f(x)
约束条件: g₁(x) ≤ b₁
g₂(x) = b₂
...
变量范围: x ∈ ℝⁿ,或 x ≥ 0 等
二、线性规划(Linear Programming)
线性规划是一类特殊的优化问题,要求:
-
目标函数是线性的
-
约束条件是线性等式或不等式
标准形式:
Maximize: z = c₁x₁ + c₂x₂ + ... + cₙxₙ
Subject to: a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁
...
aₘ₁x₁ + aₘ₂x₂ + ... + aₘₙxₙ ≤ bₘ
x₁, x₂, ..., xₙ ≥ 0
其中:
-
x₁...xₙ
是决策变量 -
z
是目标函数 -
系数矩阵
aᵢⱼ
、常数向量bᵢ
和目标函数系数cⱼ
均为已知常量
三、几何理解(二维情况下)
在二维空间中,每个约束条件对应一条直线,将空间划分为可行区域。
目标函数的值在可行区域边界某个点达到最优。
四、单纯形法(Simplex Method)原理简介
单纯形法是一种高效的线性规划算法,通过从一个可行解出发,在可行区域的边界上沿“边”移动,逐步寻找最优解。
基本流程:
-
将线性规划转化为标准形式
-
引入松弛变量(将 ≤ 转为等式)
-
构造初始单纯形表
-
选择进入基变量(即改善方向)
-
选择离基变量(保持可行性)
-
迭代直到所有目标系数 ≤ 0(最优)
特点:
-
适用于中小规模问题
-
可以在“有限步”内找到最优解(若存在)
-
时间复杂度最坏为指数级,但实际表现优良
示例(简化版)
问题:
Maximize z = 3x + 2y
Subject to:
x + y ≤ 4
x ≤ 2
y ≤ 3
x, y ≥ 0
解法思路:
-
绘制约束线,找出可行区域
-
在可行区域顶点处代入目标函数求值
-
取最大值即为最优解(例如 x=2, y=2)
总结表格:
概念 | 描述 |
---|---|
目标函数 | 需要优化(最大化/最小化)的数学表达式 |
约束条件 | 限制决策变量的线性等式/不等式 |
可行解 | 满足所有约束的变量取值组合 |
最优解 | 在可行解中使目标函数最优的解 |
单纯形法 | 沿边界迭代求最优解的线性规划算法 |
应用领域 | 工程调度、资源分配、物流运输、经济管理、生产计划等 |