【第一章:人工智能基础】04.数学建模基本方法-(1)优化问题与线性规划

第一章 人工智能基础

第四部分:数学建模基本方法

第一节:优化问题与线性规划

内容:目标函数、约束条件,单纯形法的基本原理


一、什么是优化问题

优化问题(Optimization Problem)是指在给定条件下,对一个目标函数进行最大化或最小化。

一般形式为:

目标函数:    Max 或 Min  f(x)  
约束条件:    g₁(x) ≤ b₁  
              g₂(x) = b₂  
              ...
变量范围:    x ∈ ℝⁿ,或 x ≥ 0 等

二、线性规划(Linear Programming)

线性规划是一类特殊的优化问题,要求:

  • 目标函数是线性的

  • 约束条件是线性等式或不等式

标准形式:
Maximize:      z = c₁x₁ + c₂x₂ + ... + cₙxₙ  
Subject to:    a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁  
               ...
               aₘ₁x₁ + aₘ₂x₂ + ... + aₘₙxₙ ≤ bₘ  
               x₁, x₂, ..., xₙ ≥ 0

其中:

  • x₁...xₙ 是决策变量

  • z 是目标函数

  • 系数矩阵 aᵢⱼ、常数向量 bᵢ 和目标函数系数 cⱼ 均为已知常量


三、几何理解(二维情况下)

在二维空间中,每个约束条件对应一条直线,将空间划分为可行区域
目标函数的值在可行区域边界某个点达到最优。


四、单纯形法(Simplex Method)原理简介

单纯形法是一种高效的线性规划算法,通过从一个可行解出发,在可行区域的边界上沿“边”移动,逐步寻找最优解。

基本流程:
  1. 将线性规划转化为标准形式

  2. 引入松弛变量(将 ≤ 转为等式)

  3. 构造初始单纯形表

  4. 选择进入基变量(即改善方向)

  5. 选择离基变量(保持可行性)

  6. 迭代直到所有目标系数 ≤ 0(最优)

特点:
  • 适用于中小规模问题

  • 可以在“有限步”内找到最优解(若存在)

  • 时间复杂度最坏为指数级,但实际表现优良


示例(简化版)

问题:

Maximize z = 3x + 2y
Subject to:

x + y ≤ 4  
x ≤ 2  
y ≤ 3  
x, y ≥ 0

解法思路:

  1. 绘制约束线,找出可行区域

  2. 在可行区域顶点处代入目标函数求值

  3. 取最大值即为最优解(例如 x=2, y=2)


总结表格:
概念描述
目标函数需要优化(最大化/最小化)的数学表达式
约束条件限制决策变量的线性等式/不等式
可行解满足所有约束的变量取值组合
最优解在可行解中使目标函数最优的解
单纯形法沿边界迭代求最优解的线性规划算法
应用领域工程调度、资源分配、物流运输、经济管理、生产计划等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值