个别题目中牵扯的数据范围会远远超过普通数组的存储能力,导致空间爆炸。
并且普通数组中实行差分时某些空间闲置,导致空间利用率低,所以我们可以使用map的键值对操作对数组进行保存,大大节省空间。但是同时在我们求出差分数组的前缀和的时候也需要特殊的操作进行遍历,来保证答案准确。
下面是两道关于差分用map实现的题目:
问题 G: 教室外的风景
时间限制: 1.000 Sec 内存限制: 128 MB
提交 状态题目描述
小猪上初中了,初中真好啊,有很多自修课哦。很多同学喜欢在自修课时到教室外面去,说是到老师那问问题。
学校规定,自修课到教室外去的每个同学都必须做好登记,每次进出教室的登记是以一对整数a和b来描述的,表示某一个同学在时刻a时到教室外面,在时刻b以后回到教室内。也就是说在时刻a至时刻b的这段时间中,这个登记的同学一直在教室外面。
校长想知道最多有多少同学在同一时刻都在教室外面,但同学们进进出出教室的记载实在很乱,于是校长请参加信息学兴趣小组的小猪来统计。输入
第一行只有一个整数n,表示共有n个同学进出教室的记载。
接下来n行,每行二个整数a和b,表示有一个同学在第a时刻出了教室,他在第b时刻后回到教室。1≤n≤100000,1≤a≤b≤100000000。输出
仅有一行,该行只有一个整数,表示最多有多少同学在同一时刻都在教室外面。
样例输入 Copy
4 2 6 8 9 1 5 1 2样例输出 Copy
3提示
第一个同学在时刻2到教室外面,在时刻6后回到教室;
第二个同学在时刻8到教室外面,在时刻9后回到教室;
第三个同学在时刻1到教室外面,在时刻5后回到教室;
第四个同学在时刻1到教室外面,在时刻2后回到教室;
因此在时刻2时,最多有3个同学(第一个、第三个和第四个)在教室外面。
50% 的数据中, 1 ≤n≤1000; 每个同学进出教室的时刻a和b满足: 1 ≤a≤b≤1 000;
100% 的数据中, 1 ≤n≤100000, 1 ≤a≤b≤100000000。
本题中的 a 和 b在1e8的级别上,已经超出一维数组的承受极限,我们用map进行与差分数组同样的操作
int n;cin>>n;
map<int,int>m;
while(n--)
{ int l,r;
scanf("%d %d",&l,&r);
m[l]++;
m[r+1]--;
}
在将时间的开始与结束存入数组之中后,我们需要对其进行求最大值的操作。
为方便看懂举例如下:
1 6
4 8
在1-3之间此时只存在一位同学在外面,而在4-6这个时刻的时候则存在了两位同学,实际遍历时总数加和在4时刻便变成了2,此时更新最大数值。
所以代码为:
int maxa=0;
int sum=0,last;
map<int,int>::iterator it;
for(it=m.begin();it!=m.end();it++)
{
last=it->first;sum+=it->second;
if(sum>=maxa)maxa=sum;
}
cout<<maxa;
另外一题取自acwing:
1987. 粉刷栅栏
农夫约翰发明了一种绝妙的方法来粉刷牛棚旁边的长栅栏(把栅栏想象成一维的数轴)。他只需要在他最喜欢的奶牛贝茜身上挂一个刷子,然后在一旁悠闲的喝凉水就行了。贝茜沿着栅栏来回走动时,会将她走过的栅栏部分涂上油漆。贝茜从栅栏上的位置 00 处开始,共进行 NN 次移动。移动可能形如
10 L
,表示向左移动 1010 单位距离,也可能形如15 R
,表示向右移动 1515 单位距离。给定贝茜的 NN 次移动列表,约翰想知道至少被涂抹了 22 层油漆的区域的总长度。整个行进过程中,贝茜距离出发地的距离不会超过 109109。输入格式
第一行包含一个整数 NN。
接下来 NN 行,每一行包含一个行动指令,诸如
10 L
或15 R
。输出格式
输出至少被涂抹了 22 层油漆的区域的总长度。
数据范围
1≤N≤1051≤N≤105
整个行进过程中,贝茜距离出发地的距离不会超过 109109。
每次指令移动距离的取值范围是 [1,2×109][1,2×109]。输入样例:
6 2 R 6 L 1 R 8 L 1 R 2 R
输出样例:
6
样例解释
共有 66 单位长度的区域至少被涂抹 22 层油漆。
这些区域为 (−11,−8),(−4,−3),(0,2)(−11,−8),(−4,−3),(0,2)。
给出解决代码:
#include<iostream>
#include<map>
using namespace std;
int main()
{
int n;cin>>n;
map<int,int>m;
int loc=0;
while(n--)
{
int t;char s;
scanf("%d %c",&t,&s);
if(s=='R')
{
m[loc]++;
m[loc+t]--;
loc+=t;
}
else
{
m[loc-t]++;
m[loc]--;
loc-=t;
}
}
int sum=0,last=0;
int res=0;
for(auto &[k,nu]:m)
{
if(sum>=2)res+=k-last;
last=k;sum+=nu;
}
cout<<res;
}