- 博客(336)
- 资源 (23)
- 论坛 (3)
- 问答 (3)
- 收藏
- 关注

原创 机器阅读理解(Neural Machine Reading Comprehension)综述,相关方法及未来趋势
Neural Machine Reading Comprehension:Methods and TrendsAuthor:Shanshan Liu , Xin Zhang , Sheng Zhang , Hui Wang , Weiming ZhangPDF: https://arxiv.org/abs/1907.011180.写在前面:机器阅读理解(MRC)需要机器回答基于给定上下文的问题,在过去几年里,随着各种深度学习技术的融合,它越来越受到关注。本文发表于2019年,主要从以下几个方面对该领
2021-01-21 22:36:02
37

原创 github设置仓库可见性 私人仓库设置他人协作/可见
设置仓库可见性您可选择能够查看仓库的人员。本文内容关于仓库可见性 将仓库设为私有 将仓库设为公共 将仓库设为内部关于仓库可见性创建仓库时,您可以选择将其设为公共、内部或私有。 公共仓库可供使用GitHub.com 的所有人访问,而私有仓库只有您和您与其共享的人员可访问。 内部仓库适用于 GitHub Enterprise Cloud 并且只有企业帐户的成员可访问。...
2019-09-24 15:48:06
253503
46
原创 论文阅读笔记——CDL: Curriculum Dual Learning for Emotion-Controllable Response Generation
CDL: Curriculum Dual Learning for Emotion-Controllable Response GenerationAuthor:Lei Shen Yang Feng会议:ACL2020paper:https://arxiv.org/abs/2005.00329简介:我们知道,在开放域对话的回复生成过程中,添加情感更能提高对话质量,而目前现有的方法主要是通过在标准交叉熵损失中加入正则化项增加情感表达,从而影响训练过程,但缺乏对内容一致性的进一步考虑,同时加剧了safe
2021-01-14 22:29:00
27
原创 Slurm学习笔记(二)
Slurm学习笔记(二)上文:https://eternal-sun.blog.csdn.net/article/details/112208409一、查看队列详细信息scontrol show partition显示全部队列信息,scontrol show partition PartitionName或 scontrol show partition=PartitionName显示队列名PartitionName的队列信息,输出类似:PartitionName=debug.
2021-01-05 11:38:16
137
原创 slurm学习笔记(一)
slurm学习笔记(一)官网: https://slurm.schedmd.com/中文文档:https://docs.slurm.cn/users/shou-ce-ye一、slurm简介Slurm (Simple Linux Utility for Resource Management,https://slurm.schedmd.com/)是一种可用于大型计算节点集群的高度可伸缩和容错的集群管理器和作业调度系统,超级计算系统可利用Slurm进行资源和作业管理,以避免相互干扰,提高运行..
2021-01-04 22:59:06
110
原创 VScode 删除远程资源管理器中SSH TARGETS
今天不小心输错了ip,想删除一下,无奈发现只有连接方法,没有删除按钮后来发现需要在config文件中编辑删除,位置为User目录下的.ssh/config或者programdata下的该文件文件格式如下删除然后刷新一下即可...
2021-01-04 21:19:33
190
原创 社区问答系统(CQA)简单概述
社区问答系统,是一种基于web的应用,主要帮助用户从社区中寻找复杂的,与上下文相关的问题答案。社区问答系统主要目标是在尽可能短的时间内我最近发布的问题提供最合适的答案。相比于传统的检索系统,CQA系统能够利用隐性知识(各种不同社区中)和显性知识(已解决的问题)来回答新问题,可以从知识共享和协作学习两个角度理解。基于以上假设,早期的CQA系统提出了知识管理[13]等理论方法。社区问答系统的两种主要方法是是内容/用户建模方法和自适应支持方法。其中,内容/用户建模方法主要对各种用户特性,问题及对应
2021-01-04 20:47:30
34
转载 unicodedata.normalize ——Unicode文本标准化
将Unicode文本标准化问题在处理Unicode字符串,需要确保所有字符串在底层有相同的表示。解决方案在Unicode中,某些字符能够用多个合法的编码表示。为了说明,考虑下面的这个例子:>>> s1 = 'Spicy Jalape\u00f1o'>>> s2 = 'Spicy Jalapen\u0303o'>>> s1'Spicy Jalapeño'>>> s2'Spicy Jalapeño'>.
2020-12-23 21:09:34
42
原创 python3 复制列表(不要用“=”号,用copy!!!!!!)
python3复制列表一般情况,我们默认复制变量使用等号“=”但是,对于python中的数据类型 list而言,复制列表应该用list.copy(),而不是用列表。a=[1,2,3,4]b=ab[0]=5print(a)然后发现输出是[5,2,3,4]很明显,我们”只“修改了b,而没有修改a,理论上a应该没有变化,但确实变了,为什么呢,因为使用“=” ,只是将b的指针/地址 指向了a的数据地址。改变b中的变量,该地址处的数据变更,a同样也会变。因此,如果想要复制列
2020-11-19 20:32:22
103
2
转载 序列标注两种模式BIO和BIOES
序列标注两种模式BIO和BIOESBIO标注模式(B-begin,I-inside,O-outside)BIOES标注模式(B-begin,I-inside,O-outside,E-end,S-single)在自然语言处理的序列标注问题中,标签方案的使用可能因人而异。标签说明标签方案中通常都使用一些简短的英文字符[串]来编码。标签是打在token上的。对于英文,token可以是一个单词(e.g. awesome),也可以是一个字符(e.g. a)。对于中文,t
2020-11-07 18:36:42
371
原创 目标检测知识集锦(一)
1. 写在前面目标识别算法是所有目标检测算法的核心。目标识别算法是指在一张给定的图像中识别出给定的物体。将整张图像作为输入,然后输出类别的标签并给出图像中出现物体的概率。目标检测任务不仅仅要返回图像中主要包含那些物体,而且还要返回该图像中包含了多少物体,以及目标的位置(一般用 BoundingBox进行标注)。2. 关于DPM算法(Deformable Parts Model)1、产生多个模板,整体模板以及不同的局部模板;2、拿这些不同的模板同输入图像“卷积”产生特征图;3、将这些特
2020-10-26 20:21:11
105
1
原创 如何删除双系统中的linux系统
又是一年1024,祝大家程序员节快乐。今天遇到一个问题,就是台式机开机进入GNU GRUB引导,默认是linux,需要手动选择win,而且不太好修改顺序,高标准严格要求自己的(强迫症的)我,决定删除linux系统,去除GRUB引导。方法如下:1. 制作大白菜装机版U盘;2. 下载win10镜像,放入U盘3. 进入BIOS,修改启动项,设置首选启动项为U盘;4. 进入装机用系统中,修复windows引导程序,打开电脑,发现正常进入即为windows了。5. 继续进入启动盘系统.
2020-10-24 19:12:39
117
原创 如何优雅的将代码粘贴到报告上(高亮+格式化+行号)
作为一个严格要求自己的(强迫症)程序员,怎么可以容忍看到自己辛辛苦苦写的代码被粘贴成这个样子呢?不行不行,太丑了,简直侮辱我的代码,所以怎么搞呢?推荐一:VSVS直接复制粘贴过来是这个样子的,也还可以接受,MATLAB也差不多的样子。当然前提是在用这些工具写代码,直接粘过来,方便快捷。推荐二:高亮代码专用网址http://www.planetb.ca/syntax-highlight-word转为word文档设计可以选用多种语言,根据指定的语言格式进行高亮将代
2020-10-22 21:04:47
185
1
原创 在Edge(Chrome内核)中设置使用Google搜索并设置点击搜索结果默认打开新的标签页
1. 找到浏览器设置,打开服务,地址栏与搜索2.设置如下3. 然后发现使用Google搜索后默认是覆盖搜索结果而不是打开新的标签页找了半天在浏览器没有找到设置,后来终于发现需要在谷歌搜索引擎处设置,而不是在浏览器本身设置。大功告成!...
2020-10-20 14:46:57
315
原创 联想电脑管家 锁屏壁纸目录
联想电脑管家很多壁纸很漂亮,想保存又不知道在哪个文件夹下,终于找到,小记一下C:\ProgramData\Lenovo\devicecenter\LockScreen\cache\
2020-10-12 18:09:35
460
原创 201912-2 试题名称: 回收站选址CSP
某个傻瓜开了305的动态数组???100分变成20分?305改成1005就对了???思路没问题,就因为这让人头秃的错误点,绩点自闭???吐血.jpg以儆效尤!!!时刻勉励自己,不要再犯这种低级错误!!!试题编号: 201912-2 试题名称: 回收站选址 时间限制: 1.0s 内存限制: 512.0MB #include<iostream>#include<cmath>#include&...
2020-09-08 22:17:37
288
原创 201912-1 CCF-CSP 报数 C++实现
试题编号: 201912-1 试题名称: 报数 时间限制: 1.0s 内存限制: 512.0MB 问题描述: #include<iostream>#include<cmath>#include<cstdlib>#include<algorithm>#include<string>#include<cstring>using namespace .
2020-08-27 23:24:19
445
原创 PAT 1002B 写出这个数 (20分)
1002写出这个数(20分)读入一个正整数n,计算其各位数字之和,用汉语拼音写出和的每一位数字。输入格式:每个测试输入包含 1 个测试用例,即给出自然数n的值。这里保证n小于10100。输出格式:在一行内输出n的各位数字之和的每一位,拼音数字间有 1 空格,但一行中最后一个拼音数字后没有空格。输入样例:1234567890987654321123456789输出样例:yi san wu#include<iost...
2020-07-11 16:04:33
732
原创 数据备份 快照技术 之第一次写时复制(COW)和写时重定向(ROW)
数据备份 快照技术 之第一次写时复制(COW)和写时重定向(ROW)1.快照技术关于指定数据集合的一个完全可用拷贝,该拷贝包括相应数据在某个时间点的映像。快照相当于给数据拍个照片2. 第一次写时复制 COWCOW(Copy-On-Write),写时拷贝,也称为写前拷贝。创建快照以后,如果源卷的数据发生了变化,那么快照系统会首先将原始数据拷贝到快照卷上对应的数据块中,然后再对源卷进行改写。写操作如上图简要示例,快照创建以后,若上层业务对源卷写数据X,X在缓存...
2020-06-25 09:05:06
2115
转载 REST是什么?(网络)
1.背景介绍要解释什么是REST,你应该先了解什么是API(Application Programming Interface,应用程序编程接口), 形象一点说就是像一个公司比如腾讯,阿里巴巴之类,他们可以提供一个API,然后我们或者一些其他的小公司可以编一个软件去跟这个接口(API)进行相连或交互。举个例子,比如你可以用手机的其他软件分享内容到微信朋友圈或者新浪微博,这些软件就是与微信和微博的api进行了交互。知道了API,那么就容易理解REST了。它是一种架构风格,腾讯公司或其他公司建立API时
2020-06-01 07:59:33
3415
转载 python 深度学习框架 Chainer 介绍
基于Python的深度学习HOME ABOUT ARCHIVE MILESTONE 链接Chainer介绍Chainer 介绍Posted by 徐志平 on December 14, 2017Chainer 介绍这里是 Chainer 教程的第一部分。 在此部分中,您将学习如下内容:现行框架的优缺点以及我们为什么开发 Chainer 前向以及反向计算的简单的例子 连接的使用以及梯度计算 chains 的构建(即. 大多数框架所指的“模型”) 参数优化 连接和优.
2020-05-27 09:22:37
4007
原创 【python3】keras可视化出错相关解决方案
【python3】keras可视化出错,"dot.exe" not found in path和pydot failed to call GraphVizhttps://blog.csdn.net/chadian3912/article/details/81976956AttributeError: module 'os' has no attribute 'errno'https://blog.csdn.net/weixin_43137080/article/details/82426179
2020-05-24 22:45:52
3773
原创 ImportError: Failed to import `pydot`. Please install `pydot`. For example with `pip install pydot`
keras可视化网络结构报错ImportError: Failed to import `pydot`. Please install `pydot`. For example with `pip install pydot`解决方案:安装如上三个package,使用pip install 即可pydot pydotplus graphviz
2020-05-24 22:01:16
3482
原创 LSTM 学习理解
一年前看LSTM,感觉非常复杂难理解,如今再看,感觉似乎简单清晰了许多,此处做个简单记录。LSTM来自一篇论文:github链接如下:https://colah.github.io/posts/2015-08-Understanding-LSTMs/其实,说白了,LSTM就是一个复杂点的RNN,把RNN中的cell做了替换,就成了LSTM。之所以要替换cell,是因为RNN不能解决长期依赖问题,简单说,就是循环迭代次数太多,导致RNN忘了太久之前的信息,而LSTM对之前的信息进行了选择性
2020-05-23 10:14:56
2711
原创 Machine Learning Experiment SVM Linear Classification 详解+源代码实现
关于如何选择好的决策边界我们可以看到,上述的决策边界并不是很好,虽然都可以完整的划分数据集,但是明显不够好。此处的beta垂直于w。根据上图,我们得知,如果我们可以得到w(或者beta)同时,计算出bias(=b)就可以得到关于数据集的决策边界。优化条件这是一个带有不等式条件约束的问题,我们可以通过拉格朗日乘子法,以及对偶问题的求解来转化优化方程,来使中间的marg...
2020-04-24 23:42:43
2763
原创 Machine Learning Experiment5 Regularization(正则化) 详解+代码实现
为什么要引入正则化?在做线性回归或者逻辑回归的时候,会遇到过拟合问题,即,在训练集上的error很小,但是在测试集上的偏差却很大。因此,引入正则化项,防止过拟合。保证在测试集上获得和在训练集上相同的效果。例如:对于线性回归,不同幂次的方程如下通过训练得到的结果如下:明显,对于低次方程,容易产生欠拟合,而对于高次方程,容易产生过拟合现象。因此,我们引入正则化项:其他...
2020-04-24 23:33:01
2703
原创 Machine Learning Experiment4 Logistic Regression and Newton’s Method 详解+源代码
回顾Logistic Regression的基本原理关于sigmoid函数极大似然与损失函数牛顿法实验步骤与过程首先,读入数据并绘制原始数据散点图根据图像,我们可以看出,左下大多为负样本,而右上多为正样本,划分应该大致为一个斜率为负的直线。定义预测方程:此处使用sigmoid函数,定义为匿名函数(因为在MATLAB中内联函数即将被淘汰)定义损失函...
2020-04-24 23:27:07
2576
原创 分布式存储的三阶段提交协议
分布式存储的三阶段提交协议三阶段提交是为解决两阶段提交协议的缺点而设计的。与两阶段提交不同的是,三阶段提交是“非阻塞”协议。三阶段提交在两阶段提交的第一阶段与第二阶段之间插入了一个准备阶段,使得原先在两阶段提交中,参与者在投票之后,由于协调者发生崩溃或错误,而导致参与者处于无法知晓是否提交或者中止的“不确定状态”所产生的可能相当长的延时的问题得以解决。三阶段如下:阶段1:CanC...
2020-04-20 22:37:10
2715
原创 分布式系统中的两阶段提交协议
分布式系统中的两阶段提交协议在分布式系统中,每个节点虽然可以知晓自己的操作时成功或者失败,却无法知道其他节点的操作的成功或失败。当一个事务跨越多个节点时,为了保持事务的ACID特性,需要引入一个作为协调者的组件来统一掌控所有节点(称作参与者)的操作结果并最终指示这些节点是否要把操作结果进行真正的提交(比如将更新后的数据写入磁盘等等)。因此,二阶段提交的算法思路可以概括为: 参与者将操作成败...
2020-04-20 22:35:28
872
原创 容器技术的主要机制
容器技术的主要机制定义:包含相应应用程序组件的服务实例即为容器(Container)。 在一个容器中运行的程序无法看到容器外的程序进程,包括那些直接运行在宿主机(host)上的应用和其它容器中的应用。 容器虚拟化是虚拟化操作系统。对一个应用程序而言,容器往往容纳了该程序运行所需要的全部文件,它可能包含自己的库、自己的/boot目录、/usr目录、/home目录等。然而,如果需要的话,运行中...
2020-04-20 22:33:04
821
原创 云计算基础:云基础设施机制包括哪些主要构件?云存储设备的存储等级和使用的主要存储接口
1. 云基础设施机制包括哪些主要构件?简要说明这些构件的概念。逻辑网络边界:将一个网络环境与通信网络的其他部分分割开来,形成一个虚拟网络边界,包含并隔离了一组关于云的IT资源,且这些资源可能是分布式的。 逻辑网络边界通常由提供和控制数据中心连接的网络设备来建立,一般是作为虚拟化IT环境进行部署的。 虚拟服务器:一种模拟物理服务器的虚拟化软件。通过提供独立的虚拟服务器,可以实现多个用户共享一...
2020-04-20 22:31:05
1424
原创 Machine Learning Experiment4: Logistic Regression and Newton’s Method 详解+源代码解析
回顾Logistic Regression的基本原理关于sigmoid函数极大似然与损失函数牛顿法实验步骤与过程首先,读入数据并绘制原始数据散点图根据图像,我们可以看出,左下大多为负样本,而右上多为正样本,划分应该大致为一个斜率为负的直线。定义预测方程:此处使用sigmoid函数,定义为匿名函数(因为在MATLAB中内联函数即将被淘汰)定义损失函...
2020-04-08 13:56:56
1232
原创 操作系统中系统时钟,硬件时钟(后备时钟,实时时钟),网络时钟 辨析
系统时钟,硬件时钟(后备时钟,实时时钟),网络时钟 辨析1. 系统时钟系统时钟即为我们看到的操作系统上显示的时间。系统时钟在电脑开机的时候进行初始化,通过对硬件时钟的“拷贝”完成初始化注意:这里所说的拷贝 并不是指完全的复制。linux默认把后备时钟当成GMT+0时间,windows则和BIOS完全相同。系统时钟可以通过网络时钟进行同步,在windows系统中...
2020-04-06 21:12:31
1543
原创 Machine Learning Experiment 3: Linear Discriminant Analysis 详解+源代码解析
LDA for 2 Classes首先,绘制原始数据:查看LDA步骤其中设计代码加载数据,并绘制三个类的图像X1=load('ex3red.dat');X2=load('ex3green.dat');X3=load('ex3blue.dat');hold on scatter(X1(:,1),X1(:,2),'r')scatter(X2(:,1),X...
2020-04-05 23:27:35
1225
原创 PCA 实践 利用 PCA 算法对人脸数据集内所有人进行降维和特征提取 PCA原理解析+代码
数据集实验所用到的数据集在下面的链接中, 这些数据是来自剑桥大学提供的 AT&T 人脸数据集,有 40 个人的人脸图像, 每个人有 10 张不同光照和姿态的照片。样例:地址: http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.tar.Z实验内容加载数据集,利用 PCA 算法对数...
2020-04-05 23:21:41
1979
原创 如何快捷得去除代码中的行号?
通常,我们在写报告提交代码的时候,经常会在代码前添加行号,如下:可是,这时候,需要复制代码运行的小伙伴就会觉得很麻烦,怎样快速去掉这些行号呢?方法如下:所需工具:Word首先,复制这段代码,右键粘贴,选择只保留文本粘贴,这里一定要注意!!!得到如下结果:然后,我们按住键盘 Alt 键 选中一列,如下:然后用键盘点删除键就OK了。如下:收工!...
2020-04-04 21:19:17
1469
原创 Machine Learning experiment2 Multivariate Linear Regression 详解+源代码实现
数据预处理:根据题目,我们得知,该数据为房价关于住房面积,卧室数量的相关数据,共47组数据,我们可以观测到住房面积接近等于卧室数量的1000倍左右,所以我们需要对数据进行标准化。首先,我们作图如下:上图为标准化之前的数据,如上图,我们可以看到,住房面积的范围在1000~5000之间。而房间数量在1~5之间,所以,我们采用以下方式对数据进行标准化。即假设正态分布,对每...
2020-04-04 21:10:34
986
原创 Machine Learning experiment1 Linear Regression 详解+源代码实现
线性回归 回归模型如下:其中θ是我们需要优化的参数,x是n+1维的特征向量,给定一个训练集,我们的目标是找出θ的最佳值,使得目标函数J(θ)最小化:优化方法之一是梯度下降算法。算法迭代执行,并在每次迭代中,我们更新θ遵循以下准则其中α是学习率,通过梯度下降的方式,使得损失函数最小,求得最合适的θ值。2D线性回归题目是一个测量身高的例子,对象基于两岁到八岁之...
2020-04-04 21:03:16
901
原创 jupyter notebook 切换kernel(超简单)
1. 激活虚拟环境2.安装ipykernelpip install ipykernel或者 conda install ipykernel也可。3. 将自己的环境添加到ipython的kernel中python -m ipykernel install --user --name tensorflow(你的环境名)`然后重启刷新一下notebook就OK了...
2020-03-27 18:04:40
2073
山东大学2020年1月机器学习期末考试题目整理.pdf
2020-01-08
山东大学机器学习2020年一月试题回顾.docx
2020-01-08
GMS安装包,Google
2020-03-21
GMS_Installer_44MB.apk
2020-03-21
2018-2019数据库真题.docx
2020-01-08
操作系统概念复习整理笔记
2020-01-04
chrome去除“请停用以开发者模式运行的扩展程序”提示补丁2.exe
2019-12-13
亮度调节工具V2.37.3304473.zip
2019-11-15
晚安
发表于 2019-11-24 最后回复 2019-11-24
机器人学导论分析控制及应用第二版 课后习题答案
发表于 2019-05-10 最后回复 2019-06-12
有关Ubuntu的相关问题
发表于 2019-03-04 最后回复 2019-03-06
OpenCV在比较直方图时,最佳操作是在HSV空间中操作,为什么?
2019-10-15
如何使用python实现多层语句之间的跳转即简单交互
2019-10-06
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝